IDEAS home Printed from https://ideas.repec.org/p/vua/wpaper/1997-11.html
   My bibliography  Save this paper

Discretized reality and spurious profits in stochastic programming models for asset/liability management

Author

Listed:
  • Klaassen, Pieter

    (Vrije Universiteit Amsterdam, Faculteit der Economische Wetenschappen en Econometrie (Free University Amsterdam, Faculty of Economics Sciences, Business Administration and Economitrics)

Abstract

In the literature on stochastic programming models for practical portfolio investment problems, relatively little attention has been devoted to the question how the necessarily approximate description of the asset-price uncertainty in these models influences the optimal solution. In this paper we will show that it is important that asset prices in such a description are arbitrage-free. Descriptions which have been suggested in the literature are often inconsistent with observed market prices and/or use sampling to obtain a set of scenarios about the future. We will show that this effectively introduces arbitrage opportunities in the optimization model. For an investor who cannot exploit arbitrage opportunities directly because of market imperfections and trading restrictions, we will illustrate that the presence of such arbitrage opportunities may cause substantial biases in the optimal investment strategy.

Suggested Citation

  • Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," Serie Research Memoranda 0011, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
  • Handle: RePEc:vua:wpaper:1997-11
    as

    Download full text from publisher

    File URL: http://degree.ubvu.vu.nl/repec/vua/wpaper/pdf/19970011.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(3), pages 301-329, September.
    2. Heath, David & Jarrow, Robert & Morton, Andrew, 1990. "Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(4), pages 419-440, December.
    3. Randall S. Hiller & Jonathan Eckstein, 1993. "Stochastic Dedication: Designing Fixed Income Portfolios Using Massively Parallel Benders Decomposition," Management Science, INFORMS, vol. 39(11), pages 1422-1438, November.
    4. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(1), pages 87-100, March.
    5. M. I. Kusy & W. T. Ziemba, 1986. "A Bank Asset and Liability Management Model," Operations Research, INFORMS, vol. 34(3), pages 356-376, June.
    6. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    7. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    8. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    9. Hull, John & White, Alan, 1993. "One-Factor Interest-Rate Models and the Valuation of Interest-Rate Derivative Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(2), pages 235-254, June.
    10. Golub, Bennett & Holmer, Martin & McKendall, Raymond & Pohlman, Lawrence & Zenios, Stavros A., 1995. "A stochastic programming model for money management," European Journal of Operational Research, Elsevier, vol. 85(2), pages 282-296, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    2. Wiedenmann, Susanne & Geldermann, Jutta, 2015. "Supply planning for processors of agricultural raw materials," European Journal of Operational Research, Elsevier, vol. 242(2), pages 606-619.
    3. Staino, Alessandro & Russo, Emilio, 2015. "A moment-matching method to generate arbitrage-free scenarios," European Journal of Operational Research, Elsevier, vol. 246(2), pages 619-630.
    4. Ghahtarani, Alireza & Saif, Ahmed & Ghasemi, Alireza, 2024. "Worst-case Conditional Value at Risk for asset liability management: A framework for general loss functions," European Journal of Operational Research, Elsevier, vol. 318(2), pages 500-519.
    5. Weissensteiner, Alex, 2010. "Using the Black-Derman-Toy interest rate model for portfolio optimization," European Journal of Operational Research, Elsevier, vol. 202(1), pages 175-181, April.
    6. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    7. Mitra, Sovan & Lim, Sungmook & Karathanasopoulos, Andreas, 2019. "Regression based scenario generation: Applications for performance management," Operations Research Perspectives, Elsevier, vol. 6(C).
    8. Pieter Klaassen, 2002. "Comment on "Generating Scenario Trees for Multistage Decision Problems"," Management Science, INFORMS, vol. 48(11), pages 1512-1516, November.
    9. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    10. Geyer, Alois & Hanke, Michael & Weissensteiner, Alex, 2010. "No-arbitrage conditions, scenario trees, and multi-asset financial optimization," European Journal of Operational Research, Elsevier, vol. 206(3), pages 609-613, November.
    11. de Lange, Petter E. & Fleten, Stein-Erik & Gaivoronski, Alexei A., 2004. "Modeling financial reinsurance in the casualty insurance business via stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 991-1012, February.
    12. Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
    13. Barro, Diana & Consigli, Giorgio & Varun, Vivek, 2022. "A stochastic programming model for dynamic portfolio management with financial derivatives," Journal of Banking & Finance, Elsevier, vol. 140(C).
    14. M. Schyns & Y. Crama & G. Hübner, 2010. "Optimal selection of a portfolio of options under Value-at-Risk constraints: a scenario approach," Annals of Operations Research, Springer, vol. 181(1), pages 683-708, December.
    15. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaassen, Pieter, 1997. "Discretized reality and spurious profits in stochastic programming models for asset/liability management," European Journal of Operational Research, Elsevier, vol. 101(2), pages 374-392, September.
    2. Klaassen, Pieter, 1997. "Solving stochastic programming models for asset/liability management using iterative disaggregation," Serie Research Memoranda 0010, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    3. Pieter Klaassen, 1998. "Financial Asset-Pricing Theory and Stochastic Programming Models for Asset/Liability Management: A Synthesis," Management Science, INFORMS, vol. 44(1), pages 31-48, January.
    4. ManMohan S. Sodhi, 2005. "LP Modeling for Asset-Liability Management: A Survey of Choices and Simplifications," Operations Research, INFORMS, vol. 53(2), pages 181-196, April.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    7. Amy V. Puelz, 2002. "A Stochastic Convergence Model for Portfolio Selection," Operations Research, INFORMS, vol. 50(3), pages 462-476, June.
    8. Stoyan Valchev, 2004. "Stochastic volatility Gaussian Heath-Jarrow-Morton models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 347-368.
    9. Constantin Mellios, 2001. "Valuation of Interest Rate Options in a Two-Factor Model of the Term Structure of Interest Rate," Working Papers 2001-1, Laboratoire Orléanais de Gestion - université d'Orléans.
    10. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    11. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    12. Das, Sanjiv Ranjan, 1998. "A direct discrete-time approach to Poisson-Gaussian bond option pricing in the Heath-Jarrow-Morton model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(3), pages 333-369, November.
    13. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    14. repec:uts:finphd:40 is not listed on IDEAS
    15. Patrick Hagan & Diana Woodward, 1999. "Markov interest rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(4), pages 233-260.
    16. Oldrich Alfons Vasicek & Francisco Venegas-Martínez, 2021. "Models of the Term Structure of Interest Rates: Review, Trends, and Perspectives," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(2), pages 1-28, Abril - J.
    17. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    18. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    19. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    20. Wilhelm, Jochen, 2000. "Das Gaußsche Zinsstrukturmodell: Eine Analyse auf der Basis von Wahrscheinlichkeitsverteilungen," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe 6, University of Passau, Faculty of Business and Economics.
    21. Mahendra Raj, 1994. "Pricing options on short-term interest rates using discrete arbitrage-free models," Applied Economics Letters, Taylor & Francis Journals, vol. 1(1), pages 1-3.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vua:wpaper:1997-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: R. Dam (email available below). General contact details of provider: https://edirc.repec.org/data/fewvunl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.