IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v26y2023i3d10.1007_s10951-023-00783-9.html
   My bibliography  Save this article

Automatically evolving preference-based dispatching rules for multi-objective job shop scheduling

Author

Listed:
  • Yannik Zeiträg

    (Universidade de Lisboa)

  • José Rui Figueira

    (Universidade de Lisboa)

Abstract

Dispatching rules represent a simple heuristic for finding good solutions for job shop scheduling problems. Due to their fast applicability and easy handling, they are often used in manufacturing companies to create appropriate production schedules. It has been shown that dispatching rules that are specifically designed for the requirements of a particular environment improve the performance of schedules. Hyper-heuristics based on genetic programming can be used for the automated generation of such dispatching rules. Evolutionary algorithms search the space of dispatching rule components for the most effective priority function to optimize the performance of the resulting schedule. Various studies have highlighted the advantages in the single-objective case, which made it possible to derive a large number of new dispatching rules that exceeded previous benchmark rules. Because it is usually necessary to consider more than one objective simultaneously to ensure effective creation of schedules, the need for a multi-objective optimization method arises. In this paper, we propose an interactive multi-objective optimization method, namely the reference point method, implemented in a hyper-heuristic genetic programming framework. A decision support system has also been developed and implemented in a web-based application to facilitate interaction with the user. Incorporating preferences into the solution process aims to efficiently evolve a dispatching rule that meets the expectations of a decision-maker. A fictitious experiment was carried out in a benchmark job shop environment. The results show that the final solution selected by the decision-maker can produce schedules achieving a desired compromise between the makespan, total tardiness, and total waiting time. Testing the evolved dispatching rule on an independent set of instances and comparing its performance with other benchmark dispatching rules revealed that the proposed method successfully finds dispatching rules that meet the decision-maker’s expectations and are capable of reproducing similar compromise schedules for unseen problems in the same environment.

Suggested Citation

  • Yannik Zeiträg & José Rui Figueira, 2023. "Automatically evolving preference-based dispatching rules for multi-objective job shop scheduling," Journal of Scheduling, Springer, vol. 26(3), pages 289-314, June.
  • Handle: RePEc:spr:jsched:v:26:y:2023:i:3:d:10.1007_s10951-023-00783-9
    DOI: 10.1007/s10951-023-00783-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-023-00783-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-023-00783-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Hong & Cheung, Waiman & Leung, Lawrence C., 2009. "Minimizing weighted tardiness of job-shop scheduling using a hybrid genetic algorithm," European Journal of Operational Research, Elsevier, vol. 194(3), pages 637-649, May.
    2. Demirkol, Ebru & Mehta, Sanjay & Uzsoy, Reha, 1998. "Benchmarks for shop scheduling problems," European Journal of Operational Research, Elsevier, vol. 109(1), pages 137-141, August.
    3. Yong Zhou & Jian-jun Yang & Zhuang Huang, 2020. "Automatic design of scheduling policies for dynamic flexible job shop scheduling via surrogate-assisted cooperative co-evolution genetic programming," International Journal of Production Research, Taylor & Francis Journals, vol. 58(9), pages 2561-2580, May.
    4. Edmund K Burke & Michel Gendreau & Matthew Hyde & Graham Kendall & Gabriela Ochoa & Ender Özcan & Rong Qu, 2013. "Hyper-heuristics: a survey of the state of the art," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1695-1724, December.
    5. Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
    6. Taillard, E., 1993. "Benchmarks for basic scheduling problems," European Journal of Operational Research, Elsevier, vol. 64(2), pages 278-285, January.
    7. S. S. Panwalkar & Wafik Iskander, 1977. "A Survey of Scheduling Rules," Operations Research, INFORMS, vol. 25(1), pages 45-61, February.
    8. Pickardt, Christoph W. & Hildebrandt, Torsten & Branke, Jürgen & Heger, Jens & Scholz-Reiter, Bernd, 2013. "Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems," International Journal of Production Economics, Elsevier, vol. 145(1), pages 67-77.
    9. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    10. Drake, John H. & Kheiri, Ahmed & Özcan, Ender & Burke, Edmund K., 2020. "Recent advances in selection hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 405-428.
    11. Kenneth R. Baker, 1984. "Sequencing Rules and Due-Date Assignments in a Job Shop," Management Science, INFORMS, vol. 30(9), pages 1093-1104, September.
    12. Rajendran, Chandrasekharan & Holthaus, Oliver, 1999. "A comparative study of dispatching rules in dynamic flowshops and jobshops," European Journal of Operational Research, Elsevier, vol. 116(1), pages 156-170, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeiträg, Yannik & Figueira, José Rui & Pereira, Miguel Alves, 2024. "A web-based interactive decision support system for a multi-objective lot-sizing and production scheduling model," International Journal of Production Economics, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helga Ingimundardottir & Thomas Philip Runarsson, 2018. "Discovering dispatching rules from data using imitation learning: A case study for the job-shop problem," Journal of Scheduling, Springer, vol. 21(4), pages 413-428, August.
    2. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Monaci, Marta & Agasucci, Valerio & Grani, Giorgio, 2024. "An actor-critic algorithm with policy gradients to solve the job shop scheduling problem using deep double recurrent agents," European Journal of Operational Research, Elsevier, vol. 312(3), pages 910-926.
    4. Li, Wei & Nault, Barrie R. & Ye, Honghan, 2019. "Trade-off balancing in scheduling for flow shop production and perioperative processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 817-830.
    5. Ferreira, Cristiane & Figueira, Gonçalo & Amorim, Pedro, 2022. "Effective and interpretable dispatching rules for dynamic job shops via guided empirical learning," Omega, Elsevier, vol. 111(C).
    6. Vallada, Eva & Ruiz, Rubén & Framinan, Jose M., 2015. "New hard benchmark for flowshop scheduling problems minimising makespan," European Journal of Operational Research, Elsevier, vol. 240(3), pages 666-677.
    7. Michał Ćwik & Jerzy Józefczyk, 2018. "Heuristic algorithms for the minmax regret flow-shop problem with interval processing times," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 215-238, March.
    8. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    9. Mati, Yazid & Dauzère-Pérès, Stèphane & Lahlou, Chams, 2011. "A general approach for optimizing regular criteria in the job-shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 212(1), pages 33-42, July.
    10. Chen, Binchao & Matis, Timothy I., 2013. "A flexible dispatching rule for minimizing tardiness in job shop scheduling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 360-365.
    11. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    12. K. Z. Gao & P. N. Suganthan & Q. K. Pan & T. J. Chua & T. X. Cai & C. S. Chong, 2016. "Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 363-374, April.
    13. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    14. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    15. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    16. Gerardo Minella & Rubén Ruiz & Michele Ciavotta, 2008. "A Review and Evaluation of Multiobjective Algorithms for the Flowshop Scheduling Problem," INFORMS Journal on Computing, INFORMS, vol. 20(3), pages 451-471, August.
    17. Bierwirth, C. & Kuhpfahl, J., 2017. "Extended GRASP for the job shop scheduling problem with total weighted tardiness objective," European Journal of Operational Research, Elsevier, vol. 261(3), pages 835-848.
    18. Jean-Paul Watson & Laura Barbulescu & L. Darrell Whitley & Adele E. Howe, 2002. "Contrasting Structured and Random Permutation Flow-Shop Scheduling Problems: Search-Space Topology and Algorithm Performance," INFORMS Journal on Computing, INFORMS, vol. 14(2), pages 98-123, May.
    19. Edzard Weber & Anselm Tiefenbacher & Norbert Gronau, 2019. "Need for Standardization and Systematization of Test Data for Job-Shop Scheduling," Data, MDPI, vol. 4(1), pages 1-21, February.
    20. Li, Xiaoping & Wang, Qian & Wu, Cheng, 2009. "Efficient composite heuristics for total flowtime minimization in permutation flow shops," Omega, Elsevier, vol. 37(1), pages 155-164, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:26:y:2023:i:3:d:10.1007_s10951-023-00783-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.