IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v185y2008i2p563-592.html
   My bibliography  Save this article

A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system

Author

Listed:
  • Safaei, N.
  • Saidi-Mehrabad, M.
  • Jabal-Ameli, M.S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Safaei, N. & Saidi-Mehrabad, M. & Jabal-Ameli, M.S., 2008. "A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system," European Journal of Operational Research, Elsevier, vol. 185(2), pages 563-592, March.
  • Handle: RePEc:eee:ejores:v:185:y:2008:i:2:p:563-592
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00081-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. W.E. Wilhelm & C.C. Chiou & D.B. Chang, 1998. "Integrating design and planning considerations in cellular manufacturing," Annals of Operations Research, Springer, vol. 77(0), pages 97-107, January.
    2. Mingyuan Chen, 1998. "A mathematical programming model for system reconfiguration in a dynamic cellular manufacturing environment," Annals of Operations Research, Springer, vol. 77(0), pages 109-128, January.
    3. Kannan, V. R. & Ghosh, S., 1995. "Using dynamic cellular manufacturing to simplify scheduling in cell based production systems," Omega, Elsevier, vol. 23(4), pages 443-452, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    2. Fatemeh Sabouhi & Ali Bozorgi-Amiri & Mohammad Moshref-Javadi & Mehdi Heydari, 2019. "An integrated routing and scheduling model for evacuation and commodity distribution in large-scale disaster relief operations: a case study," Annals of Operations Research, Springer, vol. 283(1), pages 643-677, December.
    3. Nai-Chieh Wei, 2013. "An Electromagnetism-Like Mechanism Method for Solving Dynamic Cell Formation Problems," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 3(10), pages 1022-1035, October.
    4. Iqbal, Asif & Al-Ghamdi, Khalid A., 2018. "Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration," Energy, Elsevier, vol. 163(C), pages 863-872.
    5. Aidin Delgoshaei & Mohd Khairol Anuar Ariffin & Ahad Ali, 2017. "A multi-period scheduling method for trading-off between skilled-workers allocation and outsource service usage in dynamic CMS," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 997-1039, February.
    6. Ting Qu & Matthias Thürer & Junhao Wang & Zongzhong Wang & Huan Fu & Congdong Li & George Q. Huang, 2017. "System dynamics analysis for an Internet-of-Things-enabled production logistics system," International Journal of Production Research, Taylor & Francis Journals, vol. 55(9), pages 2622-2649, May.
    7. Safaei, Nima & Tavakkoli-Moghaddam, Reza, 2009. "Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 301-314, August.
    8. N Safaei & R Tavakkoli-Moghaddam & F Sassani, 2009. "A series—parallel redundant reliability system for cellular manufacturing design," Journal of Risk and Reliability, , vol. 223(3), pages 233-250, September.
    9. Kuldeep Lamba & Ravi Kumar & Shraddha Mishra & Shubhangini Rajput, 2020. "Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic," Annals of Operations Research, Springer, vol. 290(1), pages 5-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R Tavakkoli-Moghaddam & N Safaei & F Sassani, 2008. "A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 443-454, April.
    2. Defersha, Fantahun M. & Chen, Mingyuan, 2008. "A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality," European Journal of Operational Research, Elsevier, vol. 187(1), pages 46-69, May.
    3. Shruti Shashikumar & Rakesh D. Raut & Vaibhav S. Narwane & Bhaskar B. Gardas & Balkrishna E. Narkhede & Anjali Awasthi, 2019. "A novel approach to determine the cell formation using heuristics approach," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 628-656, September.
    4. Arzi, Yohanan & Bukchin, Joseph & Masin, Michael, 2001. "An efficiency frontier approach for the design of cellular manufacturing systems in a lumpy demand environment," European Journal of Operational Research, Elsevier, vol. 134(2), pages 346-364, October.
    5. Defersha, Fantahun M. & Chen, Mingyuan, 2006. "A comprehensive mathematical model for the design of cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 767-783, October.
    6. Ah kioon, Steve & Bulgak, Akif Asil & Bektas, Tolga, 2009. "Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration," European Journal of Operational Research, Elsevier, vol. 192(2), pages 414-428, January.
    7. Safaei, Nima & Tavakkoli-Moghaddam, Reza, 2009. "Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 301-314, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:185:y:2008:i:2:p:563-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.