IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v77y1998i0p109-12810.1023-a1018917109580.html
   My bibliography  Save this article

A mathematical programming model for system reconfiguration in a dynamic cellular manufacturing environment

Author

Listed:
  • Mingyuan Chen

Abstract

In a dynamic manufacturing environment, manufacturing cell configurations based on current part mix and production process may need to be revised once the part mix or the production process has changed. However, machine and equipment moving costs make frequent reconfiguration uneconomical and sometimes impossible. Designing a sustainable cellular manufacturing system in a dynamic environment is studied in this paper. An integer programming model is developed to minimize material handling and machine costs as well as cell reconfiguration cost for a planning horizon of multiple time periods. Solving this integer programming problem is NP-complete. A decomposition approach is developed so that the decomposed subproblems can be solved with less computational effort. Dynamic programming is then employed to find a solution of the original problem. Numerical examples are presented to illustrate the model and the solution technique developed in this paper. Copyright Kluwer Academic Publishers 1998

Suggested Citation

  • Mingyuan Chen, 1998. "A mathematical programming model for system reconfiguration in a dynamic cellular manufacturing environment," Annals of Operations Research, Springer, vol. 77(0), pages 109-128, January.
  • Handle: RePEc:spr:annopr:v:77:y:1998:i:0:p:109-128:10.1023/a:1018917109580
    DOI: 10.1023/A:1018917109580
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1018917109580
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1018917109580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Defersha, Fantahun M. & Chen, Mingyuan, 2006. "A comprehensive mathematical model for the design of cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 103(2), pages 767-783, October.
    2. Ah kioon, Steve & Bulgak, Akif Asil & Bektas, Tolga, 2009. "Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration," European Journal of Operational Research, Elsevier, vol. 192(2), pages 414-428, January.
    3. Arzi, Yohanan & Bukchin, Joseph & Masin, Michael, 2001. "An efficiency frontier approach for the design of cellular manufacturing systems in a lumpy demand environment," European Journal of Operational Research, Elsevier, vol. 134(2), pages 346-364, October.
    4. Safaei, Nima & Tavakkoli-Moghaddam, Reza, 2009. "Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 301-314, August.
    5. Safaei, N. & Saidi-Mehrabad, M. & Jabal-Ameli, M.S., 2008. "A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system," European Journal of Operational Research, Elsevier, vol. 185(2), pages 563-592, March.
    6. Defersha, Fantahun M. & Chen, Mingyuan, 2008. "A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality," European Journal of Operational Research, Elsevier, vol. 187(1), pages 46-69, May.
    7. R Tavakkoli-Moghaddam & N Safaei & F Sassani, 2008. "A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 443-454, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:77:y:1998:i:0:p:109-128:10.1023/a:1018917109580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.