IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v200y2010i1p187-197.html
   My bibliography  Save this article

Particle swarm with equilibrium strategy of selection for multi-objective optimization

Author

Listed:
  • Wang, Yujia
  • Yang, Yupu

Abstract

A new ranking scheme based on equilibrium strategy of selection is proposed for multi-objective particle swarm optimization (MOPSO), and the preference ordering is used to identify the "best compromise" in the ranking stage. This scheme increases the selective pressure, especially when the number of objectives is very large. The proposed algorithm has been compared with other multi-objective evolutionary algorithms (MOEAs). The experimental results indicate that our algorithm produces better convergence performance.

Suggested Citation

  • Wang, Yujia & Yang, Yupu, 2010. "Particle swarm with equilibrium strategy of selection for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 200(1), pages 187-197, January.
  • Handle: RePEc:eee:ejores:v:200:y:2010:i:1:p:187-197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)01072-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, D.S. & Tan, K.C. & Huang, S.Y. & Goh, C.K. & Ho, W.K., 2008. "On solving multiobjective bin packing problems using evolutionary particle swarm optimization," European Journal of Operational Research, Elsevier, vol. 190(2), pages 357-382, October.
    2. Sarker, Ruhul & Liang, Ko-Hsin & Newton, Charles, 2002. "A new multiobjective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 140(1), pages 12-23, July.
    3. Hanne, Thomas, 2007. "A multiobjective evolutionary algorithm for approximating the efficient set," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1723-1734, February.
    4. Lee, Loo Hay & Chew, Ek Peng & Teng, Suyan & Chen, Yankai, 2008. "Multi-objective simulation-based evolutionary algorithm for an aircraft spare parts allocation problem," European Journal of Operational Research, Elsevier, vol. 189(2), pages 476-491, September.
    5. Ishibuchi, Hisao & Narukawa, Kaname & Tsukamoto, Noritaka & Nojima, Yusuke, 2008. "An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 188(1), pages 57-75, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Huifeng & Yue, Dong & Xie, Xiangpeng & Dou, Chunxia & Sun, Feng, 2017. "Gradient decent based multi-objective cultural differential evolution for short-term hydrothermal optimal scheduling of economic emission with integrating wind power and photovoltaic power," Energy, Elsevier, vol. 122(C), pages 748-766.
    2. Baghaee, H.R. & Mirsalim, M. & Gharehpetian, G.B. & Talebi, H.A., 2016. "Reliability/cost-based multi-objective Pareto optimal design of stand-alone wind/PV/FC generation microgrid system," Energy, Elsevier, vol. 115(P1), pages 1022-1041.
    3. Lin, Qiuzhen & Li, Jianqiang & Du, Zhihua & Chen, Jianyong & Ming, Zhong, 2015. "A novel multi-objective particle swarm optimization with multiple search strategies," European Journal of Operational Research, Elsevier, vol. 247(3), pages 732-744.
    4. Zhang, Huifeng & Zhou, Jianzhong & Fang, Na & Zhang, Rui & Zhang, Yongchuan, 2013. "Daily hydrothermal scheduling with economic emission using simulated annealing technique based multi-objective cultural differential evolution approach," Energy, Elsevier, vol. 50(C), pages 24-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, C.K. & Tan, K.C. & Liu, D.S. & Chiam, S.C., 2010. "A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design," European Journal of Operational Research, Elsevier, vol. 202(1), pages 42-54, April.
    2. Chen, Min-Rong & Lu, Yong-Zai, 2008. "A novel elitist multiobjective optimization algorithm: Multiobjective extremal optimization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 637-651, August.
    3. Gong, Wenyin & Cai, Zhihua, 2009. "An improved multiobjective differential evolution based on Pareto-adaptive [epsilon]-dominance and orthogonal design," European Journal of Operational Research, Elsevier, vol. 198(2), pages 576-601, October.
    4. Jacinto Martín & Concha Bielza & David Ríos Insua, 2005. "Approximating nondominated sets in continuous multiobjective optimization problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(5), pages 469-480, August.
    5. Tseng, Lin-Yu & Lin, Ya-Tai, 2009. "A hybrid genetic local search algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 84-92, October.
    6. Jie Fang & Yunqing Rao & Xusheng Zhao & Bing Du, 2023. "A Hybrid Reinforcement Learning Algorithm for 2D Irregular Packing Problems," Mathematics, MDPI, vol. 11(2), pages 1-17, January.
    7. Manuel V. C. Vieira & Margarida Carvalho, 2023. "Lexicographic optimization for the multi-container loading problem with open dimensions for a shoe manufacturer," 4OR, Springer, vol. 21(3), pages 491-512, September.
    8. Laumanns, Marco & Zenklusen, Rico, 2011. "Stochastic convergence of random search methods to fixed size Pareto front approximations," European Journal of Operational Research, Elsevier, vol. 213(2), pages 414-421, September.
    9. Li, Yanzhi & Tao, Yi & Wang, Fan, 2009. "A compromised large-scale neighborhood search heuristic for capacitated air cargo loading planning," European Journal of Operational Research, Elsevier, vol. 199(2), pages 553-560, December.
    10. Quan, Gang & Greenwood, Garrison W. & Liu, Donglin & Hu, Sharon, 2007. "Searching for multiobjective preventive maintenance schedules: Combining preferences with evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1969-1984, March.
    11. Galinina Anna & Burceva Olga & Parshutin Sergei, 2012. "The Optimization of COCOMO Model Coefficients Using Genetic Algorithms," Information Technology and Management Science, Sciendo, vol. 15(1), pages 45-51, December.
    12. Lin, Rung-Chuan & Sir, Mustafa Y. & Pasupathy, Kalyan S., 2013. "Multi-objective simulation optimization using data envelopment analysis and genetic algorithm: Specific application to determining optimal resource levels in surgical services," Omega, Elsevier, vol. 41(5), pages 881-892.
    13. Bin, Wei & Qinke, Peng & Jing, Zhao & Xiao, Chen, 2012. "A binary particle swarm optimization algorithm inspired by multi-level organizational learning behavior," European Journal of Operational Research, Elsevier, vol. 219(2), pages 224-233.
    14. Koutras, V.P. & Platis, A.N. & Gravvanis, G.A., 2009. "Optimal server resource reservation policies for priority classes of users under cyclic non-homogeneous markov modeling," European Journal of Operational Research, Elsevier, vol. 198(2), pages 545-556, October.
    15. Xiangling Zhao & Yun Dong & Lei Zuo, 2023. "A Combinatorial Optimization Approach for Air Cargo Palletization and Aircraft Loading," Mathematics, MDPI, vol. 11(13), pages 1-16, June.
    16. Labiba Noshin Asha & Arup Dey & Nita Yodo & Lucy G. Aragon, 2022. "Optimization Approaches for Multiple Conflicting Objectives in Sustainable Green Supply Chain Management," Sustainability, MDPI, vol. 14(19), pages 1-24, October.
    17. Choobineh, F. Fred & Mohebbi, Esmail & Khoo, Hansen, 2006. "A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 175(1), pages 318-337, November.
    18. Shyamal Gondkar & Sivakumar Sreeramagiri & Edwin Zondervan, 2012. "Methodology for Assessment and Optimization of Industrial Eco-Systems," Challenges, MDPI, vol. 3(1), pages 1-21, June.
    19. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    20. Sleptchenko, Andrei & Turan, Hasan Hüseyin & Pokharel, Shaligram & ElMekkawy, Tarek Y., 2019. "Cross-training policies for repair shops with spare part inventories," International Journal of Production Economics, Elsevier, vol. 209(C), pages 334-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:200:y:2010:i:1:p:187-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.