IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v175y2006i3p1731-1751.html
   My bibliography  Save this article

Object oriented model for container terminal distributed simulation

Author

Listed:
  • Bielli, Maurizio
  • Boulmakoul, Azedine
  • Rida, Mohamed

Abstract

No abstract is available for this item.

Suggested Citation

  • Bielli, Maurizio & Boulmakoul, Azedine & Rida, Mohamed, 2006. "Object oriented model for container terminal distributed simulation," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1731-1751, December.
  • Handle: RePEc:eee:ejores:v:175:y:2006:i:3:p:1731-1751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00234-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun, Won Young & Choi, Yong Seok, 1999. "A simulation model for container-terminal operation analysis using an object-oriented approach," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 221-230, March.
    2. Legato, Pasquale & Mazza, Rina M., 2001. "Berth planning and resources optimisation at a container terminal via discrete event simulation," European Journal of Operational Research, Elsevier, vol. 133(3), pages 537-547, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    2. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    3. Giscard Valonne Mouafo Nebot & Haiyan Wang, 2022. "RETRACTED: Port Terminal Performance Evaluation and Modeling," Logistics, MDPI, vol. 6(1), pages 1-22, January.
    4. Clarissa Amico & Roberto Cigolini, 2024. "Improving port supply chain through blockchain-based bills of lading: a quantitative approach and a case study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(1), pages 74-104, March.
    5. Wided Bedoui & Mame Gningue, 2019. "An integrated performance monitoring model based on port stakeholders perceptions [Modèle de pilotage de la performance globale basé sur les perceptions des parties prenantes portuaires]," Post-Print hal-02901541, HAL.
    6. Virginia M. Romero & Eduardo B. Fernandez, 2023. "Towards a Reference Architecture for Cargo Ports," Future Internet, MDPI, vol. 15(4), pages 1-32, April.
    7. Enrico Musso & Anna Sciomachen, 0. "Impact of megaships on the performance of port container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 0, pages 1-14.
    8. Enrico Musso & Anna Sciomachen, 2020. "Impact of megaships on the performance of port container terminals," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(3), pages 432-445, September.
    9. Cimpeanu, Radu & Devine, Mel T. & O’Brien, Conor, 2017. "A simulation model for the management and expansion of extended port terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 105-131.
    10. Longo, Francesco, 2010. "Design and integration of the containers inspection activities in the container terminal operations," International Journal of Production Economics, Elsevier, vol. 125(2), pages 272-283, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    2. Parola, Francesco & Sciomachen, Anna, 2005. "Intermodal container flows in a port system network:: Analysis of possible growths via simulation models," International Journal of Production Economics, Elsevier, vol. 97(1), pages 75-88, July.
    3. Cimpeanu, Radu & Devine, Mel T. & O’Brien, Conor, 2017. "A simulation model for the management and expansion of extended port terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 105-131.
    4. Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
    5. Longo, Francesco, 2010. "Design and integration of the containers inspection activities in the container terminal operations," International Journal of Production Economics, Elsevier, vol. 125(2), pages 272-283, June.
    6. Hartmann, Sönke, 2002. "A general framework for scheduling equipment and manpower on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 566, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Na, Ung Jin & Shinozuka, Masanobu, 2009. "Simulation-based seismic loss estimation of seaport transportation system," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 722-731.
    8. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    9. Zhen, Lu & Lee, Loo Hay & Chew, Ek Peng, 2011. "A decision model for berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 212(1), pages 54-68, July.
    10. Milorad Vidovic & Kap Kim, 2006. "Estimating the cycle time of three-stage material handling systems," Annals of Operations Research, Springer, vol. 144(1), pages 181-200, April.
    11. Vis, Iris F.A., 2006. "A comparative analysis of storage and retrieval equipment at a container terminal," International Journal of Production Economics, Elsevier, vol. 103(2), pages 680-693, October.
    12. Hartmann, Sönke, 2002. "Generating scenarios for simulation and optimization of container terminal logistics," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 564, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    13. Aleksandra Bartosiewicz & Adam Kucharski, 2024. "The reloading of a ship in a maritime container terminal as a queuing problem of interacting processes," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 17-33.
    14. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    15. Lee, Yusin & Chao, Shih-Liang, 2009. "A neighborhood search heuristic for pre-marshalling export containers," European Journal of Operational Research, Elsevier, vol. 196(2), pages 468-475, July.
    16. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
    17. Legato, Pasquale & Mazza, Rina M., 2001. "Berth planning and resources optimisation at a container terminal via discrete event simulation," European Journal of Operational Research, Elsevier, vol. 133(3), pages 537-547, September.
    18. Kai Wang & Lu Zhen & Shuaian Wang, 2018. "Column Generation for the Integrated Berth Allocation, Quay Crane Assignment, and Yard Assignment Problem," Transportation Science, INFORMS, vol. 52(4), pages 812-834, August.
    19. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:175:y:2006:i:3:p:1731-1751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.