IDEAS home Printed from https://ideas.repec.org/a/pal/marecl/v26y2024i1d10.1057_s41278-023-00256-y.html
   My bibliography  Save this article

Improving port supply chain through blockchain-based bills of lading: a quantitative approach and a case study

Author

Listed:
  • Clarissa Amico

    (Politecnico of Milan)

  • Roberto Cigolini

    (Politecnico of Milan)

Abstract

Blockchain technology supports business processes, and several streams of research are developing on its applications in supply chain management. This paper concerns the logistics activities that take place in a port, where a variety of actors operate, interacting through an exchange of mainly paper-based documents. The most important of these is the bill of lading; a legal document defining the terms of agreement between the seller and the buyer. The bill of lading is essential to enable the flow of freight in the port of destination, from the unloading of cargo to its destination. A correct bill of lading lifecycle allows smooth terminal operations, avoiding delays and slowdowns in freight handling. Research on the impact of using blockchain technology to manage the flow of information in a port is scant and mostly theoretical. This paper analyzes the issues regarding the transmission of a bill of lading and assesses the pursuant impact of blockchain technology on the internal operations of a container terminal. The impact of blockchain technology on the bill of lading lifecycle affects crucial issues of terminal management like the enhancement of trust among parties, security and visibility. Blockchain technology-based bills of lading, compared to electronic bills of lading, enhance privacy, security, trustworthiness and flexibility. Our research methodology is based on a discrete event simulation model, built on a real-life case of the port of Livorno, Italy, where three main areas are considered: berths, ship-to-shore cranes, and container storage yards. Simulation results show that blockchain technology reduces the average container lead time in the terminal—i.e., the time from berthing to loading on rail/truck for onward transport—by 3 to 4%, reducing the maximum container dwell-time at the yard by up to 30%, thus increasing, as a consequence, the utilization rate of the equipment.

Suggested Citation

  • Clarissa Amico & Roberto Cigolini, 2024. "Improving port supply chain through blockchain-based bills of lading: a quantitative approach and a case study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(1), pages 74-104, March.
  • Handle: RePEc:pal:marecl:v:26:y:2024:i:1:d:10.1057_s41278-023-00256-y
    DOI: 10.1057/s41278-023-00256-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41278-023-00256-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41278-023-00256-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Violetta Giada Cannas & Federica Ciccullo & Margherita Pero & Roberto Cigolini, 2020. "Sustainable innovation in the dairy supply chain: enabling factors for intermodal transportation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(24), pages 7314-7333, December.
    3. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    4. Mario Dobrovnik & David M. Herold & Elmar Fürst & Sebastian Kummer, 2018. "Blockchain for and in Logistics: What to Adopt and Where to Start," Logistics, MDPI, vol. 2(3), pages 1-14, September.
    5. Bumblauskas, Daniel & Mann, Arti & Dugan, Brett & Rittmer, Jacy, 2020. "A blockchain use case in food distribution: Do you know where your food has been?," International Journal of Information Management, Elsevier, vol. 52(C).
    6. Luca Fumagalli & Adalberto Polenghi & Elisa Negri & Irene Roda, 2019. "Framework for simulation software selection," Journal of Simulation, Taylor & Francis Journals, vol. 13(4), pages 286-303, October.
    7. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Volodymyr Babich & Gilles Hilary, 2020. "OM Forum—Distributed Ledgers and Operations: What Operations Management Researchers Should Know About Blockchain Technology," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 223-245, March.
    9. Queiroz, Maciel M. & Fosso Wamba, Samuel, 2019. "Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA," International Journal of Information Management, Elsevier, vol. 46(C), pages 70-82.
    10. Theo E Notteboom, 2006. "The Time Factor in Liner Shipping Services," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 8(1), pages 19-39, March.
    11. Kristoffer Francisco & David Swanson, 2018. "The Supply Chain Has No Clothes: Technology Adoption of Blockchain for Supply Chain Transparency," Logistics, MDPI, vol. 2(1), pages 1-13, January.
    12. Deepak Mathivathanan & K. Mathiyazhagan & Nripendra P. Rana & Sangeeta Khorana & Yogesh K. Dwivedi, 2021. "Barriers to the adoption of blockchain technology in business supply chains: a total interpretive structural modelling (TISM) approach," International Journal of Production Research, Taylor & Francis Journals, vol. 59(11), pages 3338-3359, June.
    13. Reyes, Pedro M. & Li, Suhong & Visich, John K., 2016. "Determinants of RFID adoption stage and perceived benefits," European Journal of Operational Research, Elsevier, vol. 254(3), pages 801-812.
    14. Tönnissen, Stefan & Teuteberg, Frank, 2020. "Analysing the impact of blockchain-technology for operations and supply chain management: An explanatory model drawn from multiple case studies," International Journal of Information Management, Elsevier, vol. 52(C).
    15. Witold Nowiński & Miklós Kozma, 2017. "How Can Blockchain Technology Disrupt the Existing Business Models?," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 5(3), pages 173-188.
    16. Mehrdokht Pournader & Yangyan Shi & Stefan Seuring & S.C. Lenny Koh, 2020. "Blockchain applications in supply chains, transport and logistics: a systematic review of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2063-2081, April.
    17. Albert Veenstra & Rob Zuidwijk & Eelco van Asperen, 2012. "The extended gate concept for container terminals: Expanding the notion of dry ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(1), pages 14-32, March.
    18. Elnaz Irannezhad, 2020. "The Architectural Design Requirements of a Blockchain-Based Port Community System," Logistics, MDPI, vol. 4(4), pages 1-31, November.
    19. David Yermack, 2017. "Corporate Governance and Blockchains," Review of Finance, European Finance Association, vol. 21(1), pages 7-31.
    20. Kshetri, Nir, 2018. "1 Blockchain’s roles in meeting key supply chain management objectives," International Journal of Information Management, Elsevier, vol. 39(C), pages 80-89.
    21. Bielli, Maurizio & Boulmakoul, Azedine & Rida, Mohamed, 2006. "Object oriented model for container terminal distributed simulation," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1731-1751, December.
    22. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    23. V. K. Manupati & Tobias Schoenherr & M. Ramkumar & Stephan M. Wagner & Sai Krishna Pabba & R. Inder Raj Singh, 2020. "A blockchain-based approach for a multi-echelon sustainable supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2222-2241, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulpan Tokkozhina & Ana Lucia Martins & Joao C. Ferreira, 2023. "Uncovering dimensions of the impact of blockchain technology in supply chain management," Operations Management Research, Springer, vol. 16(1), pages 99-125, March.
    2. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    3. Davies, Jennifer & Sharifi, Hossein & Lyons, Andrew & Forster, Rick & Elsayed, Omar Khaled Shokry Mohamed, 2024. "Non-fungible tokens: The missing ingredient for sustainable supply chains in the metaverse age?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 182(C).
    4. Pattanayak, Sirsha & Ramkumar, M. & Goswami, Mohit & Rana, Nripendra P., 2024. "Blockchain technology and supply chain performance: The role of trust and relational capabilities," International Journal of Production Economics, Elsevier, vol. 271(C).
    5. Agi, Maher A.N. & Jha, Ashish Kumar, 2022. "Blockchain technology in the supply chain: An integrated theoretical perspective of organizational adoption," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. Soumyadeb Chowdhury & Oscar Rodriguez-Espindola & Prasanta Dey & Pawan Budhwar, 2023. "Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK," Annals of Operations Research, Springer, vol. 327(1), pages 539-574, August.
    7. Naoum Tsolakis & Roman Schumacher & Manoj Dora & Mukesh Kumar, 2023. "Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation?," Annals of Operations Research, Springer, vol. 327(1), pages 157-210, August.
    8. Amin Vafadarnikjoo & Hadi Badri Ahmadi & James J. H. Liou & Tiago Botelho & Konstantinos Chalvatzis, 2023. "Analyzing blockchain adoption barriers in manufacturing supply chains by the neutrosophic analytic hierarchy process," Annals of Operations Research, Springer, vol. 327(1), pages 129-156, August.
    9. Venkataiah Chittipaka & Satish Kumar & Uthayasankar Sivarajah & Jana Lay-Hwa Bowden & Manish Mohan Baral, 2023. "Blockchain Technology for Supply Chains operating in emerging markets: an empirical examination of technology-organization-environment (TOE) framework," Annals of Operations Research, Springer, vol. 327(1), pages 465-492, August.
    10. Kirti Nayal & Rakesh D. Raut & Balkrishna E. Narkhede & Pragati Priyadarshinee & Gajanan B. Panchal & Vidyadhar V. Gedam, 2023. "Antecedents for blockchain technology-enabled sustainable agriculture supply chain," Annals of Operations Research, Springer, vol. 327(1), pages 293-337, August.
    11. Zhang, Tianyu & Dong, Peiwu & Chen, Xiangfeng & Gong, Yu, 2023. "The impacts of blockchain adoption on a dual-channel supply chain with risk-averse members," Omega, Elsevier, vol. 114(C).
    12. Manu Sharma & Sudhanshu Joshi & Sunil Luthra & Anil Kumar, 2022. "Managing disruptions and risks amidst COVID-19 outbreaks: role of blockchain technology in developing resilient food supply chains," Operations Management Research, Springer, vol. 15(1), pages 268-281, June.
    13. Kumar, Sourabh & Barua, Mukesh Kumar, 2023. "Exploring the hyperledger blockchain technology disruption and barriers of blockchain adoption in petroleum supply chain," Resources Policy, Elsevier, vol. 81(C).
    14. Qingyu Zhang & Salman Khan & Safeer Ullah Khan & Ikram Ullah Khan, 2023. "Understanding Blockchain Technology Adoption in Operation and Supply Chain Management of Pakistan: Extending UTAUT Model With Technology Readiness, Technology Affinity and Trust," SAGE Open, , vol. 13(4), pages 21582440231, October.
    15. Teck Ming Tan & Jari Salo, 2023. "Ethical Marketing in the Blockchain-Based Sharing Economy: Theoretical Integration and Guiding Insights," Journal of Business Ethics, Springer, vol. 183(4), pages 1113-1140, April.
    16. Büyüközkan, Gülçin & Tüfekçi, Gizem & Uztürk, Deniz, 2021. "Evaluating Blockchain requirements for effective digital supply chain management," International Journal of Production Economics, Elsevier, vol. 242(C).
    17. Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    18. Chang, Jasmine (Aichih) & Katehakis, Michael N. & Shi, Jim (Junmin) & Yan, Zhipeng, 2021. "Blockchain-empowered Newsvendor optimization," International Journal of Production Economics, Elsevier, vol. 238(C).
    19. Latan, Hengky & Lopes de Sousa Jabbour, Ana Beatriz & Sarkis, Joseph & Chiappetta Jabbour, Charbel Jose & Ali, Murad, 2024. "The nexus of supply chain performance and blockchain technology in the digitalization era: Insights from a fast-growing economy," Journal of Business Research, Elsevier, vol. 172(C).
    20. Abderahman Rejeb & John G. Keogh & Suhaiza Zailani & Horst Treiblmaier & Karim Rejeb, 2020. "Blockchain Technology in the Food Industry: A Review of Potentials, Challenges and Future Research Directions," Logistics, MDPI, vol. 4(4), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:marecl:v:26:y:2024:i:1:d:10.1057_s41278-023-00256-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.