IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i4p139-d1115783.html
   My bibliography  Save this article

Towards a Reference Architecture for Cargo Ports

Author

Listed:
  • Virginia M. Romero

    (Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA)

  • Eduardo B. Fernandez

    (Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA)

Abstract

Cyber-Physical Systems (CPS) are physical systems whose operations are coordinated, monitored, and controlled by computing and communication functions. These systems are typically heterogeneous, including Internet of Things and information technology subsystems, and can present a myriad of implementation details, making them very complex systems. An important type of CPS is a maritime container terminal (cargo port), which is a facility where cargo containers are transported between ships and land vehicles for onward transportation and vice versa. A cargo port performs four basic functions: receiving, storing, staging, and loading for both import and export containers. We present here process patterns that describe the functional aspects of cargo ports and a pattern that describes their structural properties (patterns are encapsulated solutions to recurrent problems). These patterns describe semantic aspects found in any cargo port and can be adapted to describe other CPSs. We decompose these process patterns into use cases that describe their interactions with the system. We then integrate the process patterns with structural patterns to assemble a partial reference architecture (RA) that shows the interactions of all the patterns while also indicating the typical stakeholders found in all ports. We validate the proposed reference architecture, highlighting its theoretical and practical value. Software and system designers of cargo ports need to start from a conceptual and abstract view that is subsequently refined to add more details. The use of reference architectures and patterns is an effective way to organize and describe the functional and non-functional aspects of a system, as well as to unify the design of all its aspects. This is, until now, the only published RA for cargo ports, and it can be a useful guideline for the designers of any type of cargo port.

Suggested Citation

  • Virginia M. Romero & Eduardo B. Fernandez, 2023. "Towards a Reference Architecture for Cargo Ports," Future Internet, MDPI, vol. 15(4), pages 1-32, April.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:4:p:139-:d:1115783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/4/139/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/4/139/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mathias Uslar & Sebastian Rohjans & Christian Neureiter & Filip Pröstl Andrén & Jorge Velasquez & Cornelius Steinbrink & Venizelos Efthymiou & Gianluigi Migliavacca & Seppo Horsmanheimo & Helfried Bru, 2019. "Applying the Smart Grid Architecture Model for Designing and Validating System-of-Systems in the Power and Energy Domain: A European Perspective," Energies, MDPI, vol. 12(2), pages 1-40, January.
    2. Mehdi Ganjkhani & Seyedeh Narjes Fallah & Sobhan Badakhshan & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "A Novel Detection Algorithm to Identify False Data Injection Attacks on Power System State Estimation," Energies, MDPI, vol. 12(11), pages 1-19, June.
    3. George Loukas & Diane Gan & Tuan Vuong, 2013. "A Review of Cyber Threats and Defence Approaches in Emergency Management," Future Internet, MDPI, vol. 5(2), pages 1-32, May.
    4. Bielli, Maurizio & Boulmakoul, Azedine & Rida, Mohamed, 2006. "Object oriented model for container terminal distributed simulation," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1731-1751, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giscard Valonne Mouafo Nebot & Haiyan Wang, 2022. "RETRACTED: Port Terminal Performance Evaluation and Modeling," Logistics, MDPI, vol. 6(1), pages 1-22, January.
    2. Shuo Chen & Falko Ebe & Jeromie Morris & Heiko Lorenz & Christoph Kondzialka & Gerd Heilscher, 2022. "Implementation and Test of an IEC 61850-Based Automation Framework for the Automated Data Model Integration of DES (ADMID) into DSO SCADA," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. Meng Xia & Dajun Du & Minrui Fei & Xue Li & Taicheng Yang, 2020. "A Novel Sparse Attack Vector Construction Method for False Data Injection in Smart Grids," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    5. Junhyung Bae, 2020. "Cost-Effective Placement of Phasor Measurement Units to Defend against False Data Injection Attacks on Power Grid," Energies, MDPI, vol. 13(15), pages 1-15, July.
    6. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    7. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    8. Wided Bedoui & Mame Gningue, 2019. "An integrated performance monitoring model based on port stakeholders perceptions [Modèle de pilotage de la performance globale basé sur les perceptions des parties prenantes portuaires]," Post-Print hal-02901541, HAL.
    9. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    10. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    11. Shruti & Shalli Rani & Aman Singh & Reem Alkanhel & Dina S. M. Hassan, 2023. "SDAFA: Secure Data Aggregation in Fog-Assisted Smart Grid Environment," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    12. Raghuvamsi, Y & Teeparthi, Kiran, 2023. "A review on distribution system state estimation uncertainty issues using deep learning approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    13. Sergio Potenciano Menci & Julien Le Baut & Javier Matanza Domingo & Gregorio López López & Rafael Cossent Arín & Manuel Pio Silva, 2020. "A Novel Methodology for the Scalability Analysis of ICT Systems for Smart Grids Based on SGAM: The InteGrid Project Approach," Energies, MDPI, vol. 13(15), pages 1-24, July.
    14. Clarissa Amico & Roberto Cigolini, 2024. "Improving port supply chain through blockchain-based bills of lading: a quantitative approach and a case study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 26(1), pages 74-104, March.
    15. Yueqiang Xu & Petri Ahokangas & Jean-Nicolas Louis & Eva Pongrácz, 2019. "Electricity Market Empowered by Artificial Intelligence: A Platform Approach," Energies, MDPI, vol. 12(21), pages 1-21, October.
    16. Cimpeanu, Radu & Devine, Mel T. & O’Brien, Conor, 2017. "A simulation model for the management and expansion of extended port terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 105-131.
    17. Reif, Valerie & Meeus, Leonardo, 2022. "Smart metering interoperability issues and solutions: Taking inspiration from other ecosystems and sectors," Utilities Policy, Elsevier, vol. 76(C).
    18. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Thomas I. Strasser & Sebastian Rohjans & Graeme M. Burt, 2019. "Methods and Concepts for Designing and Validating Smart Grid Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.
    20. Austin Cooper & Arturo Bretas & Sean Meyn, 2023. "Anomaly Detection in Power System State Estimation: Review and New Directions," Energies, MDPI, vol. 16(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:4:p:139-:d:1115783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.