IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v157y2004i1p39-45.html
   My bibliography  Save this article

Products of positive forms, linear matrix inequalities, and Hilbert 17th problem for ternary forms

Author

Listed:
  • de Klerk, Etienne
  • Pasechnik, Dmitrii V.

Abstract

No abstract is available for this item.

Suggested Citation

  • de Klerk, Etienne & Pasechnik, Dmitrii V., 2004. "Products of positive forms, linear matrix inequalities, and Hilbert 17th problem for ternary forms," European Journal of Operational Research, Elsevier, vol. 157(1), pages 39-45, August.
  • Handle: RePEc:eee:ejores:v:157:y:2004:i:1:p:39-45
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(03)00516-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean B. Lasserre, 2002. "Semidefinite Programming vs. LP Relaxations for Polynomial Programming," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 347-360, May.
    2. de Klerk, E. & Roos, C. & Terlaky, T., 1997. "Initialization in semidefinite programming via a self-dual, skew-symmetric embedding," Other publications TiSEM aa045849-1e10-4f84-96ca-4, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jibetean, D. & de Klerk, E., 2006. "Global optimization of rational functions : A semidefinite programming approach," Other publications TiSEM 25febbc3-cd0c-4eb7-9d37-d, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Other publications TiSEM f63bfe23-904e-4d7a-8677-8, Tilburg University, School of Economics and Management.
    2. Jean Lasserre & Tung Thanh, 2012. "A “joint + marginal” heuristic for 0/1 programs," Journal of Global Optimization, Springer, vol. 54(4), pages 729-744, December.
    3. de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
    4. Monique Laurent, 2003. "A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0--1 Programming," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 470-496, August.
    5. Hanif Sherali & Evrim Dalkiran & Jitamitra Desai, 2012. "Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts," Computational Optimization and Applications, Springer, vol. 52(2), pages 483-506, June.
    6. Kirschner, Felix & de Klerk, Etienne, 2024. "A predictor-corrector algorithm for semidefinite programming that uses the factor width cone," Other publications TiSEM 957e76ec-7f75-4e6e-adc4-c, Tilburg University, School of Economics and Management.
    7. Halicka, Margareta, 2002. "Analyticity of the central path at the boundary point in semidefinite programming," European Journal of Operational Research, Elsevier, vol. 143(2), pages 311-324, December.
    8. Ivanov, I.D. & de Klerk, E., 2007. "Parallel Implementation of a Semidefinite Programming Solver based on CSDP in a distributed memory cluster," Discussion Paper 2007-20, Tilburg University, Center for Economic Research.
    9. Etienne de Klerk & Jean B. Lasserre & Monique Laurent & Zhao Sun, 2017. "Bound-Constrained Polynomial Optimization Using Only Elementary Calculations," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 834-853, August.
    10. Terlaky, Tamas, 2001. "An easy way to teach interior-point methods," European Journal of Operational Research, Elsevier, vol. 130(1), pages 1-19, April.
    11. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    12. Ivanov, I.D. & de Klerk, E., 2007. "Parallel Implementation of a Semidefinite Programming Solver based on CSDP in a distributed memory cluster," Other publications TiSEM 9b41ff5e-2808-4d12-a58c-0, Tilburg University, School of Economics and Management.
    13. E. de Klerk & C. Roos & T. Terlaky, 1998. "Polynomial Primal-Dual Affine Scaling Algorithms in Semidefinite Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 51-69, March.
    14. Monique Laurent & Zhao Sun, 2014. "Handelman’s hierarchy for the maximum stable set problem," Journal of Global Optimization, Springer, vol. 60(3), pages 393-423, November.
    15. Badenbroek, Riley & Dahl, Joachim, 2020. "An Algorithm for Nonsymmetric Conic Optimization Inspired by MOSEK," Other publications TiSEM bcf7ef05-e4e6-4ce8-b2e9-6, Tilburg University, School of Economics and Management.
    16. de Klerk, E. & Pasechnik, D.V., 2005. "A Linear Programming Reformulation of the Standard Quadratic Optimization Problem," Discussion Paper 2005-24, Tilburg University, Center for Economic Research.
    17. Warren Adams & Hanif Sherali, 2005. "A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems," Annals of Operations Research, Springer, vol. 140(1), pages 21-47, November.
    18. Petra Renáta Rigó & Zsolt Darvay, 2018. "Infeasible interior-point method for symmetric optimization using a positive-asymptotic barrier," Computational Optimization and Applications, Springer, vol. 71(2), pages 483-508, November.
    19. Jean B. Lasserre & Kim-Chuan Toh & Shouguang Yang, 2017. "A bounded degree SOS hierarchy for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 87-117, March.
    20. Myoung-Ju Park & Sung-Pil Hong, 2013. "Handelman rank of zero-diagonal quadratic programs over a hypercube and its applications," Journal of Global Optimization, Springer, vol. 56(2), pages 727-736, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:157:y:2004:i:1:p:39-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.