IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v244y2015i2p369-378.html
   My bibliography  Save this article

A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem

Author

Listed:
  • Moradi, Siamak
  • Raith, Andrea
  • Ehrgott, Matthias

Abstract

We present a column generation algorithm for solving the bi-objective multi-commodity minimum cost flow problem. This method is based on the bi-objective simplex method and Dantzig–Wolfe decomposition. The method is initialised by optimising the problem with respect to the first objective, a single objective multi-commodity flow problem, which is solved using Dantzig–Wolfe decomposition. Then, similar to the bi-objective simplex method, our algorithm iteratively moves from one non-dominated extreme point to the next one by finding entering variables with the maximum ratio of improvement of the second objective over deterioration of the first objective. Our method reformulates the problem into a bi-objective master problem over a set of capacity constraints and several single objective linear fractional sub-problems each over a set of network flow conservation constraints. The master problem iteratively updates cost coefficients for the fractional sub-problems. Based on these cost coefficients an optimal solution of each sub-problem is obtained. The solution with the best ratio objective value out of all sub-problems represents the entering variable for the master basis. The algorithm terminates when there is no entering variable which can improve the second objective by deteriorating the first objective. This implies that all non-dominated extreme points of the original problem are obtained. We report on the performance of the algorithm on several directed bi-objective network instances with different characteristics and different numbers of commodities.

Suggested Citation

  • Moradi, Siamak & Raith, Andrea & Ehrgott, Matthias, 2015. "A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 369-378.
  • Handle: RePEc:eee:ejores:v:244:y:2015:i:2:p:369-378
    DOI: 10.1016/j.ejor.2015.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sang M. Lee & Marc J. Schniederjans, 1983. "A Multicriteria Assignment Problem: A Goal Programming Approach," Interfaces, INFORMS, vol. 13(4), pages 75-81, August.
    2. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    3. M. Ehrgott & J. Puerto & A. M. Rodríguez-Chía, 2007. "Primal-Dual Simplex Method for Multiobjective Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 483-497, September.
    4. Current, John & Marsh, Michael, 1993. "Multiobjective transportation network design and routing problems: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 65(1), pages 4-19, February.
    5. D. Klingman & A. Napier & J. Stutz, 1974. "NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems," Management Science, INFORMS, vol. 20(5), pages 814-821, January.
    6. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    7. J. A. Tomlin, 1966. "Minimum-Cost Multicommodity Network Flows," Operations Research, INFORMS, vol. 14(1), pages 45-51, February.
    8. Eusébio, Augusto & Figueira, José Rui, 2009. "On the computation of all supported efficient solutions in multi-objective integer network flow problems," European Journal of Operational Research, Elsevier, vol. 199(1), pages 68-76, November.
    9. Current, John & Min, HoKey, 1986. "Multiobjective design of transportation networks: Taxonomy and annotation," European Journal of Operational Research, Elsevier, vol. 26(2), pages 187-201, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daş, Gülesin Sena & Gzara, Fatma & Stützle, Thomas, 2020. "A review on airport gate assignment problems: Single versus multi objective approaches," Omega, Elsevier, vol. 92(C).
    2. Hela Masri & Saoussen Krichen, 2018. "Exact and approximate approaches for the Pareto front generation of the single path multicommodity flow problem," Annals of Operations Research, Springer, vol. 267(1), pages 353-377, August.
    3. Larsson, Torbjörn & Quttineh, Nils-Hassan, 2023. "One-parametric analysis of column-oriented linear programs," Operations Research Perspectives, Elsevier, vol. 10(C).
    4. Khodakaram Salimifard & Sara Bigharaz, 2022. "The multicommodity network flow problem: state of the art classification, applications, and solution methods," Operational Research, Springer, vol. 22(1), pages 1-47, March.
    5. François Lamothe & Emmanuel Rachelson & Alain Haït & Cedric Baudoin & Jean-Baptiste Dupé, 2021. "Randomized rounding algorithms for large scale unsplittable flow problems," Journal of Heuristics, Springer, vol. 27(6), pages 1081-1110, December.
    6. De Santis, Marianna & Grani, Giorgio & Palagi, Laura, 2020. "Branching with hyperplanes in the criterion space: The frontier partitioner algorithm for biobjective integer programming," European Journal of Operational Research, Elsevier, vol. 283(1), pages 57-69.
    7. Oğuz, Murat & Bektaş, Tolga & Bennell, Julia A., 2018. "Multicommodity flows and Benders decomposition for restricted continuous location problems," European Journal of Operational Research, Elsevier, vol. 266(3), pages 851-863.
    8. Kuan-Min Lin & Matthias Ehrgott & Andrea Raith, 2017. "Integrating column generation in a method to compute a discrete representation of the non-dominated set of multi-objective linear programmes," 4OR, Springer, vol. 15(4), pages 331-357, December.
    9. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    10. Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "Bus service for cargo," Research Memorandum 005, Maastricht University, Graduate School of Business and Economics (GSBE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingue SUn, 2010. "A Branch-and-Bound Algorithm for Representative Integer Efficient Solutions in Multiple Objective Network Programming Problems," Working Papers 0007, College of Business, University of Texas at San Antonio.
    2. Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
    3. Minghe Sun, 2005. "Warm-Start Routines for Solving Augmented Weighted Tchebycheff Network Programs in Multiple-Objective Network Programming," INFORMS Journal on Computing, INFORMS, vol. 17(4), pages 422-437, November.
    4. Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
    5. Minghe Sun, 2003. "Procedures for Finding Nondominated Solutions for Multiple Objective Network Programming Problems," Transportation Science, INFORMS, vol. 37(2), pages 139-152, May.
    6. Granat, Janusz & Guerriero, Francesca, 2003. "The interactive analysis of the multicriteria shortest path problem by the reference point method," European Journal of Operational Research, Elsevier, vol. 151(1), pages 103-118, November.
    7. Sedeno-Noda, A. & Gonzalez-Martin, C. & Gutierrez, J., 2005. "The biobjective undirected two-commodity minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 164(1), pages 89-103, July.
    8. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    9. Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
    10. Soroush, H.M., 2008. "Optimal paths in bi-attribute networks with fractional cost functions," European Journal of Operational Research, Elsevier, vol. 190(3), pages 633-658, November.
    11. Sedeno-Noda, A. & Gonzalez-Martin, C., 2000. "The biobjective minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 124(3), pages 591-600, August.
    12. K. Ramacandra Rao & Subhro Mitra & Joseph Szmerekovsky, 2021. "Bus Transit Network Structure Selection With Multiple Objectives," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 12(4), pages 1-13, October.
    13. Coutinho-Rodrigues, João & Tralhão, Lino & Alçada-Almeida, Luís, 2012. "Solving a location-routing problem with a multiobjective approach: the design of urban evacuation plans," Journal of Transport Geography, Elsevier, vol. 22(C), pages 206-218.
    14. Mina, Hokey & Jayaraman, Vaidyanathan & Srivastava, Rajesh, 1998. "Combined location-routing problems: A synthesis and future research directions," European Journal of Operational Research, Elsevier, vol. 108(1), pages 1-15, July.
    15. de Lima Pinto, Leizer & Bornstein, Cláudio Thomás & Maculan, Nelson, 2009. "The tricriterion shortest path problem with at least two bottleneck objective functions," European Journal of Operational Research, Elsevier, vol. 198(2), pages 387-391, October.
    16. Curtin, Kevin M. & Biba, Steve, 2011. "The Transit Route Arc-Node Service Maximization problem," European Journal of Operational Research, Elsevier, vol. 208(1), pages 46-56, January.
    17. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    18. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    19. Zanakis, Stelios H. & Mandakovic, Tomislav & Gupta, Sushil K. & Sahay, Sundeep & Hong, Sungwan, 1995. "A review of program evaluation and fund allocation methods within the service and government sectors," Socio-Economic Planning Sciences, Elsevier, vol. 29(1), pages 59-79, March.
    20. Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:244:y:2015:i:2:p:369-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.