IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v221y2012i3p491-500.html
   My bibliography  Save this article

The s-monotone index selection rules for pivot algorithms of linear programming

Author

Listed:
  • Csizmadia, Zsolt
  • Illés, Tibor
  • Nagy, Adrienn

Abstract

In this paper we introduce the concept of s-monotone index selection rule for linear programming problems. We show that several known anti-cycling pivot rules like the minimal index, Last-In–First-Out and the most-often-selected-variable pivot rules are s-monotone index selection rules. Furthermore, we show a possible way to define new s-monotone pivot rules. We prove that several known algorithms like the primal (dual) simplex, MBU-simplex algorithms and criss-cross algorithm with s-monotone pivot rules are finite methods.

Suggested Citation

  • Csizmadia, Zsolt & Illés, Tibor & Nagy, Adrienn, 2012. "The s-monotone index selection rules for pivot algorithms of linear programming," European Journal of Operational Research, Elsevier, vol. 221(3), pages 491-500.
  • Handle: RePEc:eee:ejores:v:221:y:2012:i:3:p:491-500
    DOI: 10.1016/j.ejor.2012.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712001257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurt M. Anstreicher & Tamás Terlaky, 1994. "A Monotonic Build-Up Simplex Algorithm for Linear Programming," Operations Research, INFORMS, vol. 42(3), pages 556-561, June.
    2. Stanley Zionts, 1969. "The Criss-Cross Method for Solving Linear Programming Problems," Management Science, INFORMS, vol. 15(7), pages 426-445, March.
    3. Zhang, S., 1997. "New variants of finite criss-cross pivot algorithms for linear programming," Econometric Institute Research Papers EI 9707-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Robert G. Bland, 1977. "New Finite Pivoting Rules for the Simplex Method," Mathematics of Operations Research, INFORMS, vol. 2(2), pages 103-107, May.
    5. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    6. BLAND, Robert G., 1977. "New finite pivoting rules for the simplex method," LIDAM Reprints CORE 315, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    2. Adrienn Csizmadia & Zsolt Csizmadia & Tibor Illés, 2018. "Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 535-550, September.
    3. Nabli, Hédi & Chahdoura, Sonia, 2015. "Algebraic simplex initialization combined with the nonfeasible basis method," European Journal of Operational Research, Elsevier, vol. 245(2), pages 384-391.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrienn Csizmadia & Zsolt Csizmadia & Tibor Illés, 2018. "Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 535-550, September.
    2. Konstantinos Paparrizos & Nikolaos Samaras & Angelo Sifaleras, 2015. "Exterior point simplex-type algorithms for linear and network optimization problems," Annals of Operations Research, Springer, vol. 229(1), pages 607-633, June.
    3. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    4. Liu, Yanwu & Tu, Yan & Zhang, Zhongzhen, 2021. "The row pivoting method for linear programming," Omega, Elsevier, vol. 100(C).
    5. Zhang, Shuzhong, 1999. "New variants of finite criss-cross pivot algorithms for linear programming," European Journal of Operational Research, Elsevier, vol. 116(3), pages 607-614, August.
    6. Omer, Jérémy & Soumis, François, 2015. "A linear programming decomposition focusing on the span of the nondegenerate columns," European Journal of Operational Research, Elsevier, vol. 245(2), pages 371-383.
    7. Filippi, Carlo & Romanin-Jacur, Giorgio, 2002. "Multiparametric demand transportation problem," European Journal of Operational Research, Elsevier, vol. 139(2), pages 206-219, June.
    8. Im, Haesol & Wolkowicz, Henry, 2023. "Revisiting degeneracy, strict feasibility, stability, in linear programming," European Journal of Operational Research, Elsevier, vol. 310(2), pages 495-510.
    9. Jean Bertrand Gauthier & Jacques Desrosiers & Marco E. Lübbecke, 2016. "Tools for primal degenerate linear programs: IPS, DCA, and PE," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(2), pages 161-204, June.
    10. Pan, Ping-Qi, 2008. "A largest-distance pivot rule for the simplex algorithm," European Journal of Operational Research, Elsevier, vol. 187(2), pages 393-402, June.
    11. Magnanti, Thomas L. & Orlin, James B., 1953-., 1985. "Parametric linear programming and anti-cycling pivoting rules," Working papers 1730-85., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    12. Michael J. Best & Xili Zhang, 2011. "Degeneracy Resolution for Bilinear Utility Functions," Journal of Optimization Theory and Applications, Springer, vol. 150(3), pages 615-634, September.
    13. K. O. Kortanek & Zhu Jishan, 1988. "New purification algorithms for linear programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(4), pages 571-583, August.
    14. Osman Ou{g}uz, 2002. "Generalized Column Generation for Linear Programming," Management Science, INFORMS, vol. 48(3), pages 444-452, March.
    15. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    16. P. M. Dearing & Pietro Belotti & Andrea M. Smith, 2016. "A primal algorithm for the weighted minimum covering ball problem in $$\mathbb {R}^n$$ R n," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 466-492, July.
    17. Issmail Elhallaoui & Abdelmoutalib Metrane & Guy Desaulniers & François Soumis, 2011. "An Improved Primal Simplex Algorithm for Degenerate Linear Programs," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 569-577, November.
    18. Xiaoyin Hu & Jianshu Li & Xiaoya Li & Jinchuan Cui, 2020. "A Revised Inverse Data Envelopment Analysis Model Based on Radial Models," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
    19. John W. Mamer & Richard D. McBride, 2000. "A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs: An Application to the Linear Multicommodity Flow Problem," Management Science, INFORMS, vol. 46(5), pages 693-709, May.
    20. Ma, Yanqin & Zhang, Lili & Pan, Pingqi, 2015. "Criss-cross algorithm based on the most-obtuse-angle rule and deficient basis," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 439-449.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:221:y:2012:i:3:p:491-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.