Optimal strategy of route and look for the path constrained search problem with reward criterion
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- James N. Eagle & James R. Yee, 1990. "An Optimal Branch-and-Bound Procedure for the Constrained Path, Moving Target Search Problem," Operations Research, INFORMS, vol. 38(1), pages 110-114, February.
- Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
- Alan R. Washburn, 1983. "Search for a Moving Target: The FAB Algorithm," Operations Research, INFORMS, vol. 31(4), pages 739-751, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Masiero, Lorenzo & Maggi, Rico, 2012.
"Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor,"
Transport Policy, Elsevier, vol. 20(C), pages 13-21.
- Lorenzo Masiero & Rico Maggi, 2010. "Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 1003, USI Università della Svizzera italiana.
- Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
- Lau, Haye & Huang, Shoudong & Dissanayake, Gamini, 2008. "Discounted MEAN bound for the optimal searcher path problem with non-uniform travel times," European Journal of Operational Research, Elsevier, vol. 190(2), pages 383-397, October.
- Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
- Hong, Sung-Pil & Cho, Sung-Jin & Park, Myoung-Ju, 2009. "A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search," European Journal of Operational Research, Elsevier, vol. 193(2), pages 351-364, March.
- Adel Guitouni & Hatem Masri, 2014. "An orienteering model for the search and rescue problem," Computational Management Science, Springer, vol. 11(4), pages 459-473, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lawrence D. Stone & Alan R. Washburn, 1991. "Introduction special issue on search theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 465-468, August.
- Alan R. Washburn, 1998. "Branch and bound methods for a search problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 243-257, April.
- Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
- Hohzaki, Ryusuke, 2006. "Search allocation game," European Journal of Operational Research, Elsevier, vol. 172(1), pages 101-119, July.
- Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
- J F J Vermeulen & M van den Brink, 2005. "The search for an alerted moving target," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 514-525, May.
- Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
- Duvocelle, Benoit & Flesch, János & Staudigl, Mathias & Vermeulen, Dries, 2022.
"A competitive search game with a moving target,"
European Journal of Operational Research, Elsevier, vol. 303(2), pages 945-957.
- Benoit Duvocelle & J'anos Flesch & Mathias Staudigl & Dries Vermeulen, 2020. "A competitive search game with a moving target," Papers 2008.12032, arXiv.org.
- Frédéric Dambreville & Jean‐Pierre Le Cadre, 2007. "Constrained minimax optimization of continuous search efforts for the detection of a stationary target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 589-601, September.
- Frédéric Dambreville & Jean‐Pierre Le Cadre, 2002. "Detection of a Markovian target with optimization of the search efforts under generalized linear constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(2), pages 117-142, March.
- Hohzaki, Ryusuke & Iida, Koji, 2001. "Optimal ambushing search for a moving target," European Journal of Operational Research, Elsevier, vol. 133(1), pages 120-129, August.
- Robert F. Dell & James N. Eagle & Gustavo Henrique Alves Martins & Almir Garnier Santos, 1996. "Using multiple searchers in constrained‐path, moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 463-480, June.
- Lau, Haye & Huang, Shoudong & Dissanayake, Gamini, 2008. "Discounted MEAN bound for the optimal searcher path problem with non-uniform travel times," European Journal of Operational Research, Elsevier, vol. 190(2), pages 383-397, October.
- Hong, Sung-Pil & Cho, Sung-Jin & Park, Myoung-Ju, 2009. "A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search," European Journal of Operational Research, Elsevier, vol. 193(2), pages 351-364, March.
- Michael Zabarankin & Stan Uryasev & Robert Murphey, 2006. "Aircraft routing under the risk of detection," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 728-747, December.
- Baycik, N. Orkun & Sharkey, Thomas C. & Rainwater, Chase E., 2020. "A Markov Decision Process approach for balancing intelligence and interdiction operations in city-level drug trafficking enforcement," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
- Joseph B. Kadane, 2015. "Optimal discrete search with technological choice," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 317-336, June.
- Michael P. Atkinson & Moshe Kress & Roberto Szechtman, 2017. "To catch an intruder: Part A—uncluttered scenario," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 29-40, February.
- Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.
- Bourque, François-Alex, 2019. "Solving the moving target search problem using indistinguishable searchers," European Journal of Operational Research, Elsevier, vol. 275(1), pages 45-52.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:100:y:1997:i:1:p:236-249. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.