IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i4p463-480.html
   My bibliography  Save this article

Using multiple searchers in constrained‐path, moving‐target search problems

Author

Listed:
  • Robert F. Dell
  • James N. Eagle
  • Gustavo Henrique Alves Martins
  • Almir Garnier Santos

Abstract

The search theory open literature has paid little, if any, attention to the multiple‐searcher, moving‐target search problem. We develop an optimal branch‐and‐bound procedure and six heuristics for solving constrained‐path problems with multiple searchers. Our optimal procedure outperforms existing approaches when used with only a single searcher. For more than one searcher, the time needed to guarantee an optimal solution is prohibitive. Our heuristics represent a wide variety of approaches: One solves partial problems optimally, two use paths based on maximizing the expected number of detections, two are genetic algorithm implementations, and one is local search with random restarts. A heuristic based on the expected number of detections obtains solutions within 2% of the best known for each one‐, two‐, and three‐searcher test problem considered. For one‐ and two‐searcher problems, the same heuristic's solution time is less than that of other heuristics. For three‐searcher problems, a genetic algorithm implementation obtains the best‐known solution in as little as 20% of other heuristic solution times. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Robert F. Dell & James N. Eagle & Gustavo Henrique Alves Martins & Almir Garnier Santos, 1996. "Using multiple searchers in constrained‐path, moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(4), pages 463-480, June.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:4:p:463-480
    DOI: 10.1002/(SICI)1520-6750(199606)43:43.0.CO;2-5
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199606)43:43.0.CO;2-5
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199606)43:43.0.CO;2-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James N. Eagle & James R. Yee, 1990. "An Optimal Branch-and-Bound Procedure for the Constrained Path, Moving Target Search Problem," Operations Research, INFORMS, vol. 38(1), pages 110-114, February.
    2. Lyn C. Thomas & Alan R. Washburn, 1991. "Dynamic Search Games," Operations Research, INFORMS, vol. 39(3), pages 415-422, June.
    3. Akira Ohsumi, 1991. "Optimal search for a Markovian target," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 531-554, August.
    4. James N. Eagle & Alan R. Washburn, 1991. "Cumulative search‐evasion games," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 495-510, August.
    5. Lawrence D. Stone, 1979. "Necessary and Sufficient Conditions for Optimal Search Plans for Moving Targets," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 431-440, November.
    6. Richard D. Smallwood & Edward J. Sondik, 1973. "The Optimal Control of Partially Observable Markov Processes over a Finite Horizon," Operations Research, INFORMS, vol. 21(5), pages 1071-1088, October.
    7. Scott Shorey Brown, 1980. "Optimal Search for a Moving Target in Discrete Time and Space," Operations Research, INFORMS, vol. 28(6), pages 1275-1289, December.
    8. James N. Eagle, 1984. "The Optimal Search for a Moving Target When the Search Path Is Constrained," Operations Research, INFORMS, vol. 32(5), pages 1107-1115, October.
    9. A. R. Washburn, 1980. "On a search for a moving target," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 27(2), pages 315-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bourque, François-Alex, 2019. "Solving the moving target search problem using indistinguishable searchers," European Journal of Operational Research, Elsevier, vol. 275(1), pages 45-52.
    2. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    3. Alan R. Washburn, 1998. "Branch and bound methods for a search problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 243-257, April.
    4. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    5. T. C. E. Cheng & B. Kriheli & E. Levner & C. T. Ng, 2021. "Scheduling an autonomous robot searching for hidden targets," Annals of Operations Research, Springer, vol. 298(1), pages 95-109, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyn C. Thomas & James N. Eagle, 1995. "Criteria and approximate methods for path‐constrained moving‐target search problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(1), pages 27-38, February.
    2. J F J Vermeulen & M van den Brink, 2005. "The search for an alerted moving target," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 514-525, May.
    3. Hong, Sung-Pil & Cho, Sung-Jin & Park, Myoung-Ju, 2009. "A pseudo-polynomial heuristic for path-constrained discrete-time Markovian-target search," European Journal of Operational Research, Elsevier, vol. 193(2), pages 351-364, March.
    4. Lawrence D. Stone & Alan R. Washburn, 1991. "Introduction special issue on search theory," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 465-468, August.
    5. Alan R. Washburn, 1998. "Branch and bound methods for a search problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(3), pages 243-257, April.
    6. Stanley J. Benkoski & Michael G. Monticino & James R. Weisinger, 1991. "A survey of the search theory literature," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(4), pages 469-494, August.
    7. Malek Ebadi & Raha Akhavan-Tabatabaei, 2021. "Personalized Cotesting Policies for Cervical Cancer Screening: A POMDP Approach," Mathematics, MDPI, vol. 9(6), pages 1-20, March.
    8. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout & Elizabeth S. Burnside, 2016. "Heterogeneity in Women’s Adherence and Its Role in Optimal Breast Cancer Screening Policies," Management Science, INFORMS, vol. 62(5), pages 1339-1362, May.
    9. Turgay Ayer & Oguzhan Alagoz & Natasha K. Stout, 2012. "OR Forum---A POMDP Approach to Personalize Mammography Screening Decisions," Operations Research, INFORMS, vol. 60(5), pages 1019-1034, October.
    10. Ali Hajjar & Oguzhan Alagoz, 2023. "Personalized Disease Screening Decisions Considering a Chronic Condition," Management Science, INFORMS, vol. 69(1), pages 260-282, January.
    11. Michael P. Atkinson & Moshe Kress & Roberto Szechtman, 2017. "To catch an intruder: Part A—uncluttered scenario," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 29-40, February.
    12. Zong-Zhi Lin & James C. Bean & Chelsea C. White, 2004. "A Hybrid Genetic/Optimization Algorithm for Finite-Horizon, Partially Observed Markov Decision Processes," INFORMS Journal on Computing, INFORMS, vol. 16(1), pages 27-38, February.
    13. Hohzaki, Ryusuke, 2006. "Search allocation game," European Journal of Operational Research, Elsevier, vol. 172(1), pages 101-119, July.
    14. Yanling Chang & Alan Erera & Chelsea White, 2015. "A leader–follower partially observed, multiobjective Markov game," Annals of Operations Research, Springer, vol. 235(1), pages 103-128, December.
    15. Bourque, François-Alex, 2019. "Solving the moving target search problem using indistinguishable searchers," European Journal of Operational Research, Elsevier, vol. 275(1), pages 45-52.
    16. Delavernhe, Florian & Jaillet, Patrick & Rossi, André & Sevaux, Marc, 2021. "Planning a multi-sensors search for a moving target considering traveling costs," European Journal of Operational Research, Elsevier, vol. 292(2), pages 469-482.
    17. Johannes O. Royset & Hiroyuki Sato, 2010. "Route optimization for multiple searchers," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(8), pages 701-717, December.
    18. Zehra Önen Dumlu & Serpil Sayın & İbrahim Hakan Gürvit, 2023. "Screening for preclinical Alzheimer’s disease: Deriving optimal policies using a partially observable Markov model," Health Care Management Science, Springer, vol. 26(1), pages 1-20, March.
    19. Givon, Moshe & Grosfeld-Nir, Abraham, 2008. "Using partially observed Markov processes to select optimal termination time of TV shows," Omega, Elsevier, vol. 36(3), pages 477-485, June.
    20. Hohzaki, Ryusuke & Iida, Koji, 1997. "Optimal strategy of route and look for the path constrained search problem with reward criterion," European Journal of Operational Research, Elsevier, vol. 100(1), pages 236-249, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:4:p:463-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.