IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v42y2022ics1755534521000701.html
   My bibliography  Save this article

Long-distance mode choice model estimation using mobile phone network data

Author

Listed:
  • Andersson, Angelica
  • Engelson, Leonid
  • Börjesson, Maria
  • Daly, Andrew
  • Kristoffersson, Ida

Abstract

In this paper we develop two methods for the use of mobile phone data to support the estimation of long-distance mode choice models. Both methods are based on logit formulations in which we define likelihood functions and use maximum likelihood estimation. Mobile phone data consists of information about a sequence of antennae that have detected each phone, so the mode choice is not actually observed. In the first trip-based method, the mode of each trip is inferred by a separate procedure, and the estimation process is then straightforward. However, since it is not always possible to determine the mode choice with certainty (although it is possible in the majority of cases), this method might give biased results. In our second antenna-based method we therefore base the likelihood function on the sequences of antennae that have detected the phones. The estimation aims at finding a parameter vector in the mode choice model that would explain the observed sequences best. The main challenge with the antenna-based method is the need for detailed resolution of the available data. In this paper we show the derivation of the two methods, that they coincide in case of certainty about the chosen mode and discuss the validity of assumptions and their advantages and disadvantages. Furthermore, we apply the first trip-based method to empirical data and compare the results of two different ways of implementing it.

Suggested Citation

  • Andersson, Angelica & Engelson, Leonid & Börjesson, Maria & Daly, Andrew & Kristoffersson, Ida, 2022. "Long-distance mode choice model estimation using mobile phone network data," Journal of choice modelling, Elsevier, vol. 42(C).
  • Handle: RePEc:eee:eejocm:v:42:y:2022:i:c:s1755534521000701
    DOI: 10.1016/j.jocm.2021.100337
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534521000701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2021.100337?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Working papers in Transport Economics 2018:3, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    2. Andreas Dypvik Landmark & Petter Arnesen & Carl-Johan Södersten & Odd André Hjelkrem, 2021. "Mobile phone data in transportation research: methods for benchmarking against other data sources," Transportation, Springer, vol. 48(5), pages 2883-2905, October.
    3. Mi Diao & Yi Zhu & Joseph Ferreira Jr & Carlo Ratti, 2016. "Inferring individual daily activities from mobile phone traces: A Boston example," Environment and Planning B, , vol. 43(5), pages 920-940, September.
    4. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    5. Berglund, Svante & Kristoffersson, Ida, 2020. "Anslutningsresor : en deskriptiv analys," Papers 2020:3, Research Programme in Transport Economics.
    6. Kristoffersson, Ida & Daly, Andrew & Algers, Staffan & Svalgård-Jarcem, Stehn, 2020. "Representing travel cost variation in large-scale models of long-distance passenger transport," Papers 2020:6, Research Programme in Transport Economics.
    7. Peter Stopher & Camden FitzGerald & Min Xu, 2007. "Assessing the accuracy of the Sydney Household Travel Survey with GPS," Transportation, Springer, vol. 34(6), pages 723-741, November.
    8. Stopher, Peter R. & Greaves, Stephen P., 2007. "Household travel surveys: Where are we going?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 367-381, June.
    9. Varela, Juan Manuel Lorenzo & Börjesson, Maria & Daly, Andrew, 2018. "Quantifying errors in travel time and cost by latent variables," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 520-541.
    10. Manski, Charles F & Lerman, Steven R, 1977. "The Estimation of Choice Probabilities from Choice Based Samples," Econometrica, Econometric Society, vol. 45(8), pages 1977-1988, November.
    11. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling departure time choice using mobile phone data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 424-439.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Börjesson & Marco Kouwenhoven & Gerard Jong & Andrew Daly, 2023. "Can repeated surveys reveal the variation of the value of travel time over time?," Transportation, Springer, vol. 50(1), pages 245-284, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersson, Angelica & Engelson, Leonid & Börjesson, Maria & Daly, Andrew & Kristoffersson, Ida, 2021. "Long-distance mode choice model estimation using mobile phone network data," Papers 2021:1, Research Programme in Transport Economics.
    2. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    3. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    4. Stephane Hess & Andrew Daly & Maria Börjesson, 2020. "A critical appraisal of the use of simple time-money trade-offs for appraisal value of travel time measures," Transportation, Springer, vol. 47(3), pages 1541-1570, June.
    5. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    6. Aydemir, Abdurrahman, 2002. "Effects of Selection Criteria and Economic Opportunities on the Characteristics of Immigrants," Analytical Studies Branch Research Paper Series 2002182e, Statistics Canada, Analytical Studies Branch.
    7. Peer, Stefanie & Börjesson, Maria, 2018. "Temporal framing of stated preference experiments: does it affect valuations?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 319-333.
    8. Egu, Oscar & Bonnel, Patrick, 2020. "How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 267-282.
    9. Mofeng Yang & Yixuan Pan & Aref Darzi & Sepehr Ghader & Chenfeng Xiong & Lei Zhang, 2022. "A data-driven travel mode share estimation framework based on mobile device location data," Transportation, Springer, vol. 49(5), pages 1339-1383, October.
    10. Andreas Dypvik Landmark & Petter Arnesen & Carl-Johan Södersten & Odd André Hjelkrem, 2021. "Mobile phone data in transportation research: methods for benchmarking against other data sources," Transportation, Springer, vol. 48(5), pages 2883-2905, October.
    11. Eivind Tveter, 2023. "The value of travel time: a revealed preferences approach using exogenous variation in travel costs and automatic traffic count data," Transportation, Springer, vol. 50(6), pages 2273-2297, December.
    12. Danalet, Antonin & Tinguely, Loïc & Lapparent, Matthieu de & Bierlaire, Michel, 2016. "Location choice with longitudinal WiFi data," Journal of choice modelling, Elsevier, vol. 18(C), pages 1-17.
    13. Barros, Ricardo Paes de, 2010. "The Impact of Social Interventions: Nonparametric Identification from Choice-Based Samples," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 30(2), December.
    14. Abdurrahman Aydemir, 2003. "Are Immigrants Positively or Negatively Selected? The Role of Immigrant Selection Criteria and Self-Selection," Labor and Demography 0306002, University Library of Munich, Germany.
    15. Gu, Yu & Chen, Anthony & Kitthamkesorn, Songyot & Jang, Sunghoon, 2024. "Alternate closed-form weibit-based model for assessing travel choice with an oddball alternative," Transportation Research Part B: Methodological, Elsevier, vol. 179(C).
    16. Chakroborty, Partha & Pinjari, Abdul Rawoof & Meena, Jayant & Gandhi, Avinash, 2021. "A Psychophysical Ordered Response Model of Time Perception and Service Quality: Application to Level of Service Analysis at Toll Plazas," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 44-64.
    17. Guevara, C. Angelo & Ben-Akiva, Moshe E., 2013. "Sampling of alternatives in Multivariate Extreme Value (MEV) models," Transportation Research Part B: Methodological, Elsevier, vol. 48(C), pages 31-52.
    18. Wafic El-Assi & Catherine Morency & Eric J. Miller & Khandker Nurul Habib, 2020. "Investigating the capacity of continuous household travel surveys in capturing the temporal rhythms of travel demand," Transportation, Springer, vol. 47(4), pages 1787-1808, August.
    19. Hu, Beibei & Sun, Yue & Li, Zixun & Zhang, Yanli & Sun, Huijun & Dong, Xianlei, 2024. "Competitive advantage of car-sharing based on travel costs comparison model: A case study of Beijing, China," Research in Transportation Economics, Elsevier, vol. 103(C).
    20. Nirmale, Sangram Krishna & Pinjari, Abdul Rawoof, 2023. "Discrete choice models with multiplicative stochasticity in choice environment variables: Application to accommodating perception errors in driver behaviour models," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 169-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:42:y:2022:i:c:s1755534521000701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.