IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2017005.html
   My bibliography  Save this paper

The empirical beta copula

Author

Listed:
  • Segers, Johan
  • Sibuya, Masaaki
  • Tsukahara, Hideatsu

Abstract

No abstract is available for this item.

Suggested Citation

  • Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," LIDAM Reprints ISBA 2017005, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2017005
    Note: In : Journal of Multivariate Analysis, vol. 155, p. 35-51 (2017)
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ćmiel, Bogdan & Ledwina, Teresa, 2020. "Validation of association," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 55-67.
    2. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    3. Lu Lu & Sujit Ghosh, 2024. "Nonparametric Estimation of Conditional Copula Using Smoothed Checkerboard Bernstein Sieves," Mathematics, MDPI, vol. 12(8), pages 1-17, April.
    4. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    6. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    7. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    8. Lu Lu & Sujit Ghosh, 2023. "Nonparametric Estimation of Multivariate Copula Using Empirical Bayes Methods," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    9. Kiriliouk, Anna & Segers, Johan & Tsukahara, Hideatsu, 2019. "On Some Resampling Procedures with the Empirical Beta Copula," LIDAM Discussion Papers ISBA 2019012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    11. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    13. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    14. Pan Shenyi & Joe Harry, 2024. "Assessing copula models for mixed continuous-ordinal variables," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-18.
    15. Alessia Benevento & Fabrizio Durante, 2023. "Wasserstein Dissimilarity for Copula-Based Clustering of Time Series with Spatial Information," Mathematics, MDPI, vol. 12(1), pages 1-15, December.
    16. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    17. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    18. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    19. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    20. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    22. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2017005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.