IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v155y2017icp35-51.html
   My bibliography  Save this article

The empirical beta copula

Author

Listed:
  • Segers, Johan
  • Sibuya, Masaaki
  • Tsukahara, Hideatsu

Abstract

Given a sample from a continuous multivariate distribution F, the uniform random variates generated independently and rearranged in the order specified by the componentwise ranks of the original sample look like a sample from the copula of F. This idea can be regarded as a variant on Baker’s [J. Multivariate Anal. 99 (2008) 2312–2327] copula construction and leads to the definition of the empirical beta copula. The latter turns out to be a particular case of the empirical Bernstein copula, the degrees of all Bernstein polynomials being equal to the sample size.

Suggested Citation

  • Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2017. "The empirical beta copula," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 35-51.
  • Handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:35-51
    DOI: 10.1016/j.jmva.2016.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16301749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    2. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    3. Bücher, Axel & Dette, Holger, 2010. "A note on bootstrap approximations for the empirical copula process," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1925-1932, December.
    4. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    5. Bücher, Axel & Volgushev, Stanislav, 2013. "Empirical and sequential empirical copula processes under serial dependence," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    2. Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
    3. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2017. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2017028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Laverny, Oskar & Masiello, Esterina & Maume-Deschamps, Véronique & Rullière, Didier, 2021. "Dependence structure estimation using Copula Recursive Trees," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    5. Shih, Jia-Han & Emura, Takeshi, 2021. "On the copula correlation ratio and its generalization," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    6. Lu Lu & Sujit Ghosh, 2023. "Nonparametric Estimation of Multivariate Copula Using Empirical Bayes Methods," Mathematics, MDPI, vol. 11(20), pages 1-22, October.
    7. Kiriliouk, Anna, 2017. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space with application to generalized max-linear models," LIDAM Discussion Papers ISBA 2017027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.
    9. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    10. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    11. Kiriliouk, Anna & Segers, Johan & Tsukahara, Hideatsu, 2019. "On Some Resampling Procedures with the Empirical Beta Copula," LIDAM Discussion Papers ISBA 2019012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Kiriliouk, Anna & Segers, Johan & Tafakori, Laleh, 2018. "An estimator of the stable tail dependence function based on the empirical beta copula," LIDAM Discussion Papers ISBA 2018029, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    14. Junker, Robert R. & Griessenberger, Florian & Trutschnig, Wolfgang, 2021. "Estimating scale-invariant directed dependence of bivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    15. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    16. Kiriliouk, Anna, 2020. "Hypothesis testing for tail dependence parameters on the boundary of the parameter space," Econometrics and Statistics, Elsevier, vol. 16(C), pages 121-135.
    17. Ćmiel, Bogdan & Ledwina, Teresa, 2020. "Validation of association," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 55-67.
    18. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2022. "Stochastic representation of FGM copulas using multivariate Bernoulli random variables," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Segers, Johan & Sibuya, Masaaki & Tsukahara, Hideatsu, 2016. "The Empirical Beta Copula," LIDAM Discussion Papers ISBA 2016032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Kojadinovic, Ivan & Stemikovskaya, Kristina, 2019. "Subsampling (weighted smooth) empirical copula processes," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 704-723.
    3. Genest, Christian & Nešlehová, Johanna G. & Rémillard, Bruno, 2017. "Asymptotic behavior of the empirical multilinear copula process under broad conditions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 82-110.
    4. Kiriliouk, Anna & Segers, Johan & Tsukahara, Hideatsu, 2019. "On Some Resampling Procedures with the Empirical Beta Copula," LIDAM Discussion Papers ISBA 2019012, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    6. Berghaus, Betina & Segers, Johan, 2017. "Weak convergence of the weighted empirical beta copula process," LIDAM Discussion Papers ISBA 2017015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Bucher, Axel & Segers, Johan & Volgushev, Stanislav, 2013. "When uniform weak convergence fails: empirical processes for dependence functions via epi- and hypographs," LIDAM Discussion Papers ISBA 2013019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Bucher, Axel & Segers, Johan, 2013. "Extreme value copula estimation based on block maxima of a multivariate stationary time series," LIDAM Discussion Papers ISBA 2013049, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    10. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    11. Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2013. "Detecting changes in cross-sectional dependence in multivariate time series," LIDAM Discussion Papers ISBA 2013051, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Serge B. Provost & Yishan Zang, 2024. "Nonparametric Copula Density Estimation Methodologies," Mathematics, MDPI, vol. 12(3), pages 1-35, January.
    13. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    14. Bücher, Axel & Kojadinovic, Ivan & Rohmer, Tom & Segers, Johan, 2014. "Detecting changes in cross-sectional dependence in multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 111-128.
    15. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    16. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    17. Berghaus, Betina & Segers, Johan, 2018. "Weak convergence of the weighted empirical beta copula process," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 266-281.
    18. Masuhr Andreas & Trede Mark, 2020. "Bayesian estimation of generalized partition of unity copulas," Dependence Modeling, De Gruyter, vol. 8(1), pages 119-131, January.
    19. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    20. Guo, Nan & Wang, Fang & Yang, Jingping, 2017. "Remarks on composite Bernstein copula and its application to credit risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 38-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:155:y:2017:i:c:p:35-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.