IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v239y2024i2s0304407623000209.html
   My bibliography  Save this article

Spherical autoregressive models, with application to distributional and compositional time series

Author

Listed:
  • Zhu, Changbo
  • Müller, Hans-Georg

Abstract

We introduce a new class of autoregressive models for spherical time series. The dimension of the spheres on which the observations of the time series are situated may be finite-dimensional or infinite-dimensional, where in the latter case we consider the Hilbert sphere. Spherical time series arise in various settings. We focus here on distributional and compositional time series. Applying a square root transformation to the densities of the observations of a distributional time series maps the distributional observations to the Hilbert sphere, equipped with the Fisher–Rao metric. Likewise, applying a square root transformation to the components of the observations of a compositional time series maps the compositional observations to a finite-dimensional sphere, equipped with the geodesic metric on spheres. The challenge in modeling such time series lies in the intrinsic non-linearity of spheres and Hilbert spheres, where conventional arithmetic operations such as addition or scalar multiplication are no longer available. To address this difficulty, we consider rotation operators to map observations on the sphere. Specifically, we introduce a class of skew-symmetric operators such that the associated exponential operators are rotation operators that for each given pair of points on the sphere map the first point of the pair to the second point of the pair. We exploit the fact that the space of skew-symmetric operators is Hilbertian to develop autoregressive modeling of geometric differences that correspond to rotations of spherical and distributional time series. Differences expressed in terms of rotations can be taken between the Fréchet mean and the observations or between consecutive observations of the time series. We derive theoretical properties of the ensuing autoregressive models and showcase these approaches with several motivating data. These include a time series of yearly observations of bivariate distributions of the minimum/maximum temperatures for a period of 120 days during each summer for the years 1990-2018 at Los Angeles (LAX) and John F. Kennedy (JFK) international airports. A second data application concerns a compositional time series with annual observations of compositions of energy sources for power generation in the U.S..

Suggested Citation

  • Zhu, Changbo & Müller, Hans-Georg, 2024. "Spherical autoregressive models, with application to distributional and compositional time series," Journal of Econometrics, Elsevier, vol. 239(2).
  • Handle: RePEc:eee:econom:v:239:y:2024:i:2:s0304407623000209
    DOI: 10.1016/j.jeconom.2022.12.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623000209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.12.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Rosenthal & Wei Wu & Eric Klassen & Anuj Srivastava, 2014. "Spherical Regression Models Using Projective Linear Transformations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1615-1624, December.
    2. Xu Shi & Xiaoou Li & Tianxi Cai, 2021. "Spherical Regression Under Mismatch Corruption With Application to Automated Knowledge Translation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1953-1964, October.
    3. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    4. Hron, K. & Menafoglio, A. & Templ, M. & Hrůzová, K. & Filzmoser, P., 2016. "Simplicial principal component analysis for density functions in Bayes spaces," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 330-350.
    5. Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2019. "Nonparametric Rotations for Sphere-Sphere Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 466-476, January.
    6. Fan,Jianqing & Yao,Qiwei, 2017. "The Elements of Financial Econometrics," Cambridge Books, Cambridge University Press, number 9781107191174, November.
    7. T. D. Downs, 2003. "Spherical regression," Biometrika, Biometrika Trust, vol. 90(3), pages 655-668, September.
    8. J. L. Scealy & A. H. Welsh, 2011. "Regression for compositional data by using distributions defined on the hypersphere," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 351-375, June.
    9. Chao Zhang & Piotr Kokoszka & Alexander Petersen, 2022. "Wasserstein autoregressive models for density time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(1), pages 30-52, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Davy Paindaveine & Thomas Verdebout, 2019. "Inference for Spherical Location under High Concentration," Working Papers ECARES 2019-02, ULB -- Universite Libre de Bruxelles.
    3. Jeong Min Jeon & Ingrid Van Keilegom, 2024. "Density estimation and regression analysis on hyperspheres in the presence of measurement error," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(2), pages 513-556, June.
    4. Jayant Jha & Atanu Biswas, 2020. "Orientation relationship in finite dimensional space," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 1011-1034, September.
    5. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    6. Czudaj Robert L., 2020. "The role of uncertainty on agricultural futures markets momentum trading and volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(3), pages 1-39, June.
    7. Niels Haldrup & Carsten P. T. Rosenskjold, 2019. "A Parametric Factor Model of the Term Structure of Mortality," Econometrics, MDPI, vol. 7(1), pages 1-22, March.
    8. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    9. Xiongtao Dai & Zhenhua Lin & Hans‐Georg Müller, 2021. "Modeling sparse longitudinal data on Riemannian manifolds," Biometrics, The International Biometric Society, vol. 77(4), pages 1328-1341, December.
    10. Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Risks, MDPI, vol. 6(1), pages 1-20, March.
    11. Kanti V. Mardia, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 59-63, March.
    12. Bruns, Stephan B. & König, Johannes & Stern, David I., 2019. "Replication and robustness analysis of ‘energy and economic growth in the USA: A multivariate approach’," Energy Economics, Elsevier, vol. 82(C), pages 100-113.
    13. Raja Ben Hajria & Salah Khardani & Hamdi Raïssi, 2017. "Testing the lag length of vector autoregressive models: A power comparison between portmanteau and Lagrange multiplier tests," Working Papers 2017-03, Escuela de Negocios y Economía, Pontificia Universidad Católica de Valparaíso.
    14. Raimund M. Kovacevic, 2019. "Valuation and pricing of electricity delivery contracts: the producer’s view," Annals of Operations Research, Springer, vol. 275(2), pages 421-460, April.
    15. Simmet Anastasia & Pohlmeier Winfried, 2020. "The CAPM with Measurement Error: ‘There’s life in the old dog yet!’," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 240(4), pages 417-453, August.
    16. Napoleón Vargas Jurado & Kent M. Eskridge & Stephen D. Kachman & Ronald M. Lewis, 2018. "Using a Bayesian Hierarchical Linear Mixing Model to Estimate Botanical Mixtures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 190-207, June.
    17. João Sousa Andrade & Adelaide Duarte & Marta Simões, 2011. "Inequality and Growth in Portugal: a time series analysis," GEMF Working Papers 2011-11, GEMF, Faculty of Economics, University of Coimbra.
    18. Accolley, Delali, 2018. "Accounting for Busines Cycles in Canada: II. The Role of Money," MPRA Paper 85481, University Library of Munich, Germany.
    19. Shakina, Elena & Parshakov, Petr & Alsufiev, Artem, 2021. "Rethinking the corporate digital divide: The complementarity of technologies and the demand for digital skills," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    20. Tsagris, Michail & Preston, Simon & T.A. Wood, Andrew, 2016. "Improved classi cation for compositional data using the $\alpha$-transformation," MPRA Paper 67657, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:239:y:2024:i:2:s0304407623000209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.