IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p466-476.html
   My bibliography  Save this article

Nonparametric Rotations for Sphere-Sphere Regression

Author

Listed:
  • Marco Di Marzio
  • Agnese Panzera
  • Charles C. Taylor

Abstract

Regression of data represented as points on a hypersphere has traditionally been treated using parametric families of transformations that include the simple rigid rotation as an important, special case. On the other hand, nonparametric methods have generally focused on modeling a scalar response through a spherical predictor by representing the regression function as a polynomial, leading to component-wise estimation of a spherical response. We propose a very flexible, simple regression model where for each location of the manifold a specific rotation matrix is to be estimated. To make this approach tractable, we assume continuity of the regression function that, in turn, allows for approximations of rotation matrices based on a series expansion. It is seen that the nonrigidity of our technique motivates an iterative estimation within a Newton–Raphson learning scheme, which exhibits bias reduction properties. Extensions to general shape matching are also outlined. Both simulations and real data are used to illustrate the results. Supplementary materials for this article are available online.

Suggested Citation

  • Marco Di Marzio & Agnese Panzera & Charles C. Taylor, 2019. "Nonparametric Rotations for Sphere-Sphere Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 466-476, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:466-476
    DOI: 10.1080/01621459.2017.1421542
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1421542
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1421542?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Zhu, Changbo & Müller, Hans-Georg, 2024. "Spherical autoregressive models, with application to distributional and compositional time series," Journal of Econometrics, Elsevier, vol. 239(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:466-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.