IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v218y2020i2p419-434.html
   My bibliography  Save this article

Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels

Author

Listed:
  • Khalaf, Lynda
  • Saunders, Charles J.

Abstract

Persistence and mean-nonstationarity often undermine reliability of asymptotically justified inference in dynamic panels. We combine the Monte Carlo test (MCT) and the indirect inference estimation (IIE) principles to construct confidence regions for autoregressive panel parameters with valid coverage whether mean-stationarity is imposed or relaxed and whether autoregressive roots are at or close to the unit boundary or far from unity. Procedures are based on the standard least squares dummy variables (LSDV) estimator and an augmented counterpart which we introduce to restore finite sample exactness in mean-nonstationary settings. We also put forth a ‘Durbin–Wu–Hausman-type’ test for mean-stationarity given a tested autoregressive parameter, based on the distance between the LSDV and its augmented counterpart. Location-scale invariance is shown analytically, and the MCT methods involve multiple stages that preserve exchangeability. The above are formally shown to control size exactly for finite N and T, and provide a new perspective to a literature that is primarily asymptotic. The advantages of the proposed approaches are also illustrated via comparative simulation studies. The identification problems arising from relaxing mean-stationarity are assessed and addressed; we also consider heteroskedastic directions. Results show concrete promise even with very small sample sizes and more broadly, underscore the usefulness of combining MCT and IIE principles.

Suggested Citation

  • Khalaf, Lynda & Saunders, Charles J., 2020. "Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels," Journal of Econometrics, Elsevier, vol. 218(2), pages 419-434.
  • Handle: RePEc:eee:econom:v:218:y:2020:i:2:p:419-434
    DOI: 10.1016/j.jeconom.2020.04.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620301433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.04.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dufour, Jean-Marie & Kiviet, Jan F., 1996. "Exact tests for structural change in first-order dynamic models," Journal of Econometrics, Elsevier, vol. 70(1), pages 39-68, January.
    2. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    3. Jushan Bai, 2013. "Fixed‐Effects Dynamic Panel Models, a Factor Analytical Method," Econometrica, Econometric Society, vol. 81(1), pages 285-314, January.
    4. Smith, A A, Jr, 1993. "Estimating Nonlinear Time-Series Models Using Simulated Vector Autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 63-84, Suppl. De.
    5. Bun, Maurice J.G. & Carree, Martin A., 2005. "Bias-Corrected Estimation in Dynamic Panel Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 200-210, April.
    6. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    7. Marie-Claude Beaulieu & Jean-Marie Dufour & Lynda Khalaf, 2013. "Identification-Robust Estimation and Testing of the Zero-Beta CAPM," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(3), pages 892-924.
    8. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    9. Hahn, Jinyong, 1999. "How informative is the initial condition in the dynamic panel model with fixed effects?," Journal of Econometrics, Elsevier, vol. 93(2), pages 309-326, December.
    10. Norkute, Milda, 2014. "A Monte Carlo study of a factor analytical method for fixed-effects dynamic panel models," Economics Letters, Elsevier, vol. 123(3), pages 348-351.
    11. Marcelo Moreira, 2008. "A Maximum Likelihood Method for the Incidental Parameter Problem," NBER Working Papers 13787, National Bureau of Economic Research, Inc.
    12. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    13. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    14. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    15. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    16. Jean-Marie Dufour & Jan F. Kiviet, 1998. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Econometrica, Econometric Society, vol. 66(1), pages 79-104, January.
    17. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    18. Norkute, Milda, 2014. "A Monte Carlo Study of a Factor Analytical Method for Fixed-Effects Dynamic Panel Models," Working Papers 2014:7, Lund University, Department of Economics.
    19. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    20. Beaulieu, Marie-Claude & Dufour, Jean-Marie & Khalaf, Lynda, 2014. "Exact confidence sets and goodness-of-fit methods for stable distributions," Journal of Econometrics, Elsevier, vol. 181(1), pages 3-14.
    21. Han, Chirok & Phillips, Peter C. B. & Sul, Donggyu, 2014. "X-Differencing And Dynamic Panel Model Estimation," Econometric Theory, Cambridge University Press, vol. 30(1), pages 201-251, February.
    22. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    23. Hahn, Jinyong & Moon, Hyungsik Roger, 2006. "Reducing Bias Of Mle In A Dynamic Panel Model," Econometric Theory, Cambridge University Press, vol. 22(3), pages 499-512, June.
    24. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    25. Hayakawa, Kazuhiko, 2009. "On the effect of mean-nonstationarity in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 153(2), pages 133-135, December.
    26. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    27. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    28. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    29. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    30. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    31. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    2. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    3. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    4. Bao, Yong & Yu, Xuewen, 2023. "Indirect inference estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1027-1053.
    5. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    6. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    7. Alexander Chudik & M. Hashem Pesaran, 2017. "An Augmented Anderson-Hsiao Estimator for Dynamic Short-T Panels," Globalization Institute Working Papers 327, Federal Reserve Bank of Dallas, revised 27 Mar 2021.
    8. Jan F. Kiviet & Milan Pleus & Rutger Poldermans, 2014. "Accuracy and efficiency of various GMM inference techniques in dynamic micro panel data models," UvA-Econometrics Working Papers 14-09, Universiteit van Amsterdam, Dept. of Econometrics.
    9. Gouriéroux, Christian & Phillips, Peter C.B. & Yu, Jun, 2010. "Indirect inference for dynamic panel models," Journal of Econometrics, Elsevier, vol. 157(1), pages 68-77, July.
    10. Alexander Chudik & M. Hashem Pesaran & Jui‐Chung Yang, 2018. "Half‐panel jackknife fixed‐effects estimation of linear panels with weakly exogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(6), pages 816-836, September.
    11. Chihwa Kao & Long Liu & Rui Sun, 2021. "A bias-corrected fixed effects estimator in the dynamic panel data model," Empirical Economics, Springer, vol. 60(1), pages 205-225, January.
    12. Devdatta Ray & Mikael Linden, 2020. "Health expenditure, longevity, and child mortality: dynamic panel data approach with global data," International Journal of Health Economics and Management, Springer, vol. 20(1), pages 99-119, March.
    13. Hahn, Jinyong & Hausman, Jerry & Kuersteiner, Guido, 2007. "Long difference instrumental variables estimation for dynamic panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 574-617, October.
    14. Alexander Chudik & M. Hashem Pesaran & Jui-Chung Yang, 2016. "Half-panel jackknife fixed effects estimation of panels with weakly exogenous regressor," Globalization Institute Working Papers 281, Federal Reserve Bank of Dallas.
    15. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    16. Ryo Okui, 2017. "Misspecification in Dynamic Panel Data Models and Model-Free Inferences," The Japanese Economic Review, Japanese Economic Association, vol. 68(3), pages 283-304, September.
    17. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Discussion Paper 2023-028, Tilburg University, Center for Economic Research.
    18. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    19. John C. Chao & Peter C. B. Phillips, 2019. "Uniform Inference in Panel Autoregression," Econometrics, MDPI, vol. 7(4), pages 1-28, November.
    20. Arturas Juodis, 2013. "First Difference Transformation in Panel VAR models: Robustness, Estimation and Inference," UvA-Econometrics Working Papers 13-06, Universiteit van Amsterdam, Dept. of Econometrics.

    More about this item

    Keywords

    Dynamic panel model; Mean-nonstationary; Indirect inference; Monte Carlo tests; Test inversion;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:218:y:2020:i:2:p:419-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.