IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-143755.html
   My bibliography  Save this paper

Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation

Author

Listed:
  • Robert Kollmann

Abstract

This paper develops a novel approach for estimating latent state variables of Dynamic Stochastic General Equilibrium (DSGE) models that are solved using a second-order accurate approximation. I apply the Kalman filter to a state-space representation of the second-order solution based on the ‘pruning’ scheme of Kim, Kim, Schaumburg and Sims (2008). By contrast to particle filters, no stochastic simulations are needed for the filter here--the present method is thus much faster. In Monte Carlo experiments, the filter here generates more accurate estimates of latent state variables than the standard particle filter. The present filter is also more accurate than a conventional Kalman filter that treats the linearized model as the true data generating process. Due to its high speed, the filter presented here is suited for the estimation of model parameters; a quasi-maximum likelihood procedure can be used for that purpose.

Suggested Citation

  • Robert Kollmann, 2013. "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation," Working Papers ECARES ECARES 2013-24, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/143755
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/143755/1/2013-24-KOLLMANN-tractable.pdf
    File Function: 2013-24-KOLLMANN-tractable
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lombardo, Giovanni & Sutherland, Alan, 2007. "Computing second-order-accurate solutions for rational expectation models using linear solution methods," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 515-530, February.
    2. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    3. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    4. Kollmann, Robert & Kim, Jinill & Kim, Sunghyun H., 2011. "Solving the multi-country Real Business Cycle model using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 203-206, February.
    5. Martin M Andreasen & Jesús Fernández-Villaverde & Juan F Rubio-Ramírez, 2018. "The Pruned State-Space System for Non-Linear DSGE Models: Theory and Empirical Applications," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(1), pages 1-49.
    6. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    7. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    8. Christopher A. Sims & Jinill Kim & Sunghyun Kim, 2003. "Calculating and Using Second Order Accurate Solution of Discrete Time Dynamic Equilibrium Models," Computing in Economics and Finance 2003 162, Society for Computational Economics.
    9. Jan R. Magnus, 1978. "The moments of products of quadratic forms in normal variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 32(4), pages 201-210, December.
    10. Kollmann, Robert, 2002. "Monetary policy rules in the open economy: effects on welfare and business cycles," Journal of Monetary Economics, Elsevier, vol. 49(5), pages 989-1015, July.
    11. Kollmann, Robert, 1996. "Incomplete asset markets and the cross-country consumption correlation puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 20(5), pages 945-961, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herbst, Edward & Schorfheide, Frank, 2019. "Tempered particle filtering," Journal of Econometrics, Elsevier, vol. 210(1), pages 26-44.
    2. Michael K. Johnston & Robert G. King & Denny Lie, 2014. "Straightforward approximate stochastic equilibria for nonlinear rational expectations models," CAMA Working Papers 2014-59, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Robert Kollmann, 2015. "Exchange Rates Dynamics with Long-Run Risk and Recursive Preferences," Open Economies Review, Springer, vol. 26(2), pages 175-196, April.
    4. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    5. Mutschler, Willi, 2015. "Identification of DSGE models—The effect of higher-order approximation and pruning," Journal of Economic Dynamics and Control, Elsevier, vol. 56(C), pages 34-54.
    6. Robert Kollmann, 2015. "Exchange Rate and Current Account Dynamics: the Role of Asset Market Structure, Long-Run Risk and Risk Appetite," 2015 Meeting Papers 1397, Society for Economic Dynamics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Kollmann, 2015. "Tractable Latent State Filtering for Non-Linear DSGE Models Using a Second-Order Approximation and Pruning," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 239-260, February.
    2. Kollmann, Robert, 2017. "Tractable likelihood-based estimation of non-linear DSGE models," Economics Letters, Elsevier, vol. 161(C), pages 90-92.
    3. Amisano, Gianni & Tristani, Oreste, 2010. "Euro area inflation persistence in an estimated nonlinear DSGE model," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 1837-1858, October.
    4. Mutschler, Willi, 2018. "Higher-order statistics for DSGE models," Econometrics and Statistics, Elsevier, vol. 6(C), pages 44-56.
    5. Doh, Taeyoung, 2011. "Yield curve in an estimated nonlinear macro model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(8), pages 1229-1244, August.
    6. Boris Blagov, 2018. "Financial crises and time-varying risk premia in a small open economy: a Markov-switching DSGE model for Estonia," Empirical Economics, Springer, vol. 54(3), pages 1017-1060, May.
    7. Andras Fulop & Jeremy Heng & Junye Li, 2022. "Efficient Likelihood-based Estimation via Annealing for Dynamic Structural Macrofinance Models," Papers 2201.01094, arXiv.org.
    8. Benigno, Gianluca & Benigno, Pierpaolo & Nisticò, Salvatore, 2013. "Second-order approximation of dynamic models with time-varying risk," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1231-1247.
    9. Kollmann, Robert & Kim, Jinill & Kim, Sunghyun H., 2011. "Solving the multi-country Real Business Cycle model using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 203-206, February.
    10. Schmidt, Sebastian & Wieland, Volker, 2013. "The New Keynesian Approach to Dynamic General Equilibrium Modeling: Models, Methods and Macroeconomic Policy Evaluation," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1439-1512, Elsevier.
    11. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," EconStor Preprints 269876, ZBW - Leibniz Information Centre for Economics.
    12. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    13. Alali, Walid Y., 2009. "Solution Strategies of Dynamic Stochastic General Equilibrium (DSGE) models," MPRA Paper 116480, University Library of Munich, Germany.
    14. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    15. Gomme, Paul & Klein, Paul, 2011. "Second-order approximation of dynamic models without the use of tensors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(4), pages 604-615, April.
    16. Ester Faia & Tommaso Monacelli, 2003. "Ramsey monetary policy and international relative prices," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    17. Christian Bayer & Benjamin Born & Ralph Luetticke, 2024. "Shocks, Frictions, and Inequality in US Business Cycles," American Economic Review, American Economic Association, vol. 114(5), pages 1211-1247, May.
    18. Aruoba, S. Borağan & Bocola, Luigi & Schorfheide, Frank, 2017. "Assessing DSGE model nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 83(C), pages 34-54.
    19. Robert Kollmann, 2013. "Global Banks, Financial Shocks, and International Business Cycles: Evidence from an Estimated Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(s2), pages 159-195, December.
    20. Kollmann, Robert, 2002. "Monetary Policy Rules in a Two-Country World," MPRA Paper 70347, University Library of Munich, Germany.

    More about this item

    Keywords

    latent state filtering; estimation of DSGE models; second-order approximation; pruning; Kalman filter; particle filter; quasi-maximum likelihood;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/143755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/arulbbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.