IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v200y2017i2p312-325.html
   My bibliography  Save this article

Semiparametric identification of the bid–ask spread in extended Roll models

Author

Listed:
  • Chen, Xiaohong
  • Linton, Oliver
  • Yi, Yanping

Abstract

This paper provides new identification results for the bid–ask spread and the nonparametric distribution of the latent fundamental price increments (εt) from the observed transaction prices alone. The results are established via the characteristic function approach, and hence allow for discrete or continuous εt and the observed price increments do not need to have any finite moments. Constructive identification (and overidentification) results are established first in the basic Roll (1984) model, and then in various extended Roll models, including general unbalanced order flow, serially dependent latent trade direction indicators, adverse selection, random spread and a multivariate Roll model.

Suggested Citation

  • Chen, Xiaohong & Linton, Oliver & Yi, Yanping, 2017. "Semiparametric identification of the bid–ask spread in extended Roll models," Journal of Econometrics, Elsevier, vol. 200(2), pages 312-325.
  • Handle: RePEc:eee:econom:v:200:y:2017:i:2:p:312-325
    DOI: 10.1016/j.jeconom.2017.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617300994
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Hasbrouck, Joel, 2004. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 305-326, June.
    3. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Estimating Multivariate Latent-Structure Models," SciencePo Working papers Main hal-01097135, HAL.
    4. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    5. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    6. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    7. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    8. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    9. Evdokimov, Kirill & White, Halbert, 2012. "Some Extensions Of A Lemma Of Kotlarski," Econometric Theory, Cambridge University Press, vol. 28(4), pages 925-932, August.
    10. Ebrahimi, Nader & Hamedani, G.G. & Soofi, Ehsan S. & Volkmer, Hans, 2010. "A class of models for uncorrelated random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1859-1871, September.
    11. Michael Bleaney & Zhiyong Li, 2015. "The performance of bid-ask spread estimators under less than ideal conditions," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(1), pages 98-127, March.
    12. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    13. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    14. Joel Hasbrouck, 2009. "Trading Costs and Returns for U.S. Equities: Estimating Effective Costs from Daily Data," Journal of Finance, American Finance Association, vol. 64(3), pages 1445-1477, June.
    15. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Xiaohong & Linton, Oliver & Schneeberger, Stefan & Yi, Yanping, 2019. "Semiparametric estimation of the bid–ask spread in extended roll models," Journal of Econometrics, Elsevier, vol. 208(1), pages 160-178.
    2. Jarosław Duda & Henryk Gurgul & Robert Syrek, 2020. "Modelling bid-ask spread conditional distributions using hierarchical correlation reconstruction," Statistics in Transition New Series, Polish Statistical Association, vol. 21(5), pages 99-118, December.
    3. Duda Jarosław & Gurgul Henryk & Syrek Robert, 2020. "Modelling bid-ask spread conditional distributions using hierarchical correlation reconstruction," Statistics in Transition New Series, Statistics Poland, vol. 21(5), pages 99-118, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    2. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    3. Yingyao Hu, 2015. "Microeconomic models with latent variables: applications of measurement error models in empirical industrial organization and labor economics," CeMMAP working papers 03/15, Institute for Fiscal Studies.
    4. Yingyao Hu, 2015. "Microeconomic models with latent variables: applications of measurement error models in empirical industrial organization and labor economics," CeMMAP working papers CWP03/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Jochmans, Koen & Weidner, Martin, 2024. "Inference On A Distribution From Noisy Draws," Econometric Theory, Cambridge University Press, vol. 40(1), pages 60-97, February.
    7. Song, Suyong, 2015. "Semiparametric estimation of models with conditional moment restrictions in the presence of nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 95-109.
    8. Xiaohong Chen & Oliver Linton & Stefan Schneeberger & Yanping Yi, 2016. "Simple Nonparametric Estimators for the Bid-Ask Spread in the Roll Model," Cowles Foundation Discussion Papers 2033, Cowles Foundation for Research in Economics, Yale University.
    9. Michael Bleaney & Zhiyong Li, 2016. "A new spread estimator," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 179-211, July.
    10. Lin, Zhongjian & Hu, Yingyao, 2024. "Binary choice with misclassification and social interactions, with an application to peer effects in attitude," Journal of Econometrics, Elsevier, vol. 238(1).
    11. Manuel Arellano & Stéphane Bonhomme, 2023. "Recovering Latent Variables by Matching," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 693-706, January.
    12. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    13. Schennach, Susanne M., 2019. "Convolution without independence," Journal of Econometrics, Elsevier, vol. 211(1), pages 308-318.
    14. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    15. Yao Luo & Ruli Xiao, 2019. "Identification of Auction Models Using Order Statistics," Working Papers tecipa-630, University of Toronto, Department of Economics.
    16. Li, Zhiyong & Lambe, Brendan & Adegbite, Emmanuel, 2018. "New bid-ask spread estimators from daily high and low prices," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 69-86.
    17. Chen, Xiaohong & Linton, Oliver & Schneeberger, Stefan & Yi, Yanping, 2019. "Semiparametric estimation of the bid–ask spread in extended roll models," Journal of Econometrics, Elsevier, vol. 208(1), pages 160-178.
    18. Yingyao Hu & Yi Xin, 2019. "Identi?cation and estimation of dynamic structural models with unobserved choices," CeMMAP working papers CWP35/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    20. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.

    More about this item

    Keywords

    Bid–ask spread; Roll model; Semiparametric identification; Latent variables;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:200:y:2017:i:2:p:312-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.