IDEAS home Printed from https://ideas.repec.org/a/eme/sefpps/v32y2015i1p98-127.html
   My bibliography  Save this article

The performance of bid-ask spread estimators under less than ideal conditions

Author

Listed:
  • Michael Bleaney
  • Zhiyong Li

Abstract

Purpose - – This paper aims to investigate the performance of estimators of the bid-ask spread in a wide range of circumstances and sampling frequencies. The bid-ask spread is important for many reasons. Because spread data are not always available, many methods have been suggested for estimating the spread. Existing papers focus on the performance of the estimators either under ideal conditions or in real data. The gap between ideal conditions and the properties of real data are usually ignored. The consistency of the estimates across various sampling frequencies is also ignored. Design/methodology/approach - – The estimators and the possible errors are analysed theoretically. Then we perform simulation experiments, reporting the bias, standard deviation and root mean square estimation error of each estimator. More specifically, we assess the effects of the following factors on the performance of the estimators: the magnitude of the spread relative to returns volatility, randomly varying of spreads, the autocorrelation of mid-price returns and mid-price changes caused by trade directions and feedback trading. Findings - – The best estimates come from using the highest frequency of data available. The relative performance of estimators can vary quite markedly with the sampling frequency. In small samples, the standard deviation can be more important to the estimation error than bias; in large samples, the opposite tends to be true. Originality/value - – There is a conspicuous lack of simulation evidence on the comparative performance of different estimators of the spread under the less than ideal conditions that are typical of real-world data. This paper aims to fill this gap.

Suggested Citation

  • Michael Bleaney & Zhiyong Li, 2015. "The performance of bid-ask spread estimators under less than ideal conditions," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 32(1), pages 98-127, March.
  • Handle: RePEc:eme:sefpps:v:32:y:2015:i:1:p:98-127
    DOI: 10.1108/SEF-04-2014-0075
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/SEF-04-2014-0075/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/SEF-04-2014-0075/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/SEF-04-2014-0075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Hasbrouck, Joel, 2004. "Liquidity in the Futures Pits: Inferring Market Dynamics from Incomplete Data," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(2), pages 305-326, June.
    3. repec:bla:jfinan:v:44:y:1989:i:1:p:115-34 is not listed on IDEAS
    4. Ho, Thomas & Stoll, Hans R., 1981. "Optimal dealer pricing under transactions and return uncertainty," Journal of Financial Economics, Elsevier, vol. 9(1), pages 47-73, March.
    5. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    6. Holden, Craig W., 2009. "New low-frequency spread measures," Journal of Financial Markets, Elsevier, vol. 12(4), pages 778-813, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Bleaney & Zhiyong Li, 2016. "A new spread estimator," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 179-211, July.
    2. Chen, Xiaohong & Linton, Oliver & Yi, Yanping, 2017. "Semiparametric identification of the bid–ask spread in extended Roll models," Journal of Econometrics, Elsevier, vol. 200(2), pages 312-325.
    3. Klova, Valeriia & Odegaard, Bernt Arne, 2018. "Equity trading costs have fallen less than commonly thought. Evidence using alternative trading cost estimators," UiS Working Papers in Economics and Finance 2018/4, University of Stavanger, revised 2019.
    4. Chen, Xiaohong & Linton, Oliver & Schneeberger, Stefan & Yi, Yanping, 2019. "Semiparametric estimation of the bid–ask spread in extended roll models," Journal of Econometrics, Elsevier, vol. 208(1), pages 160-178.
    5. Li, Zhiyong & Lambe, Brendan & Adegbite, Emmanuel, 2018. "New bid-ask spread estimators from daily high and low prices," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 69-86.
    6. Batten, Jonathan A. & Kinateder, Harald & Szilagyi, Peter G. & Wagner, Niklas F., 2019. "Liquidity, surprise volume and return premia in the oil market," Energy Economics, Elsevier, vol. 77(C), pages 93-104.
    7. Xiaohong Chen & Oliver Linton & Stefan Schneeberger & Yanping Yi, 2016. "Simple Nonparametric Estimators for the Bid-Ask Spread in the Roll Model," Cowles Foundation Discussion Papers 2033, Cowles Foundation for Research in Economics, Yale University.
    8. Xiaohong Chen & Oliver Linton & Stefan Schneeberger, 2016. "Simple Nonparametric Estimators for the Bid-Ask Spread in the Roll Model," Cambridge Working Papers in Economics 1620, Faculty of Economics, University of Cambridge.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Bleaney & Zhiyong Li, 2016. "A new spread estimator," Review of Quantitative Finance and Accounting, Springer, vol. 47(1), pages 179-211, July.
    2. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    3. Biais, Bruno & Glosten, Larry & Spatt, Chester, 2005. "Market microstructure: A survey of microfoundations, empirical results, and policy implications," Journal of Financial Markets, Elsevier, vol. 8(2), pages 217-264, May.
    4. Corò, Filippo & Dufour, Alfonso & Varotto, Simone, 2013. "Credit and liquidity components of corporate CDS spreads," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5511-5525.
    5. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    6. Comerton-Forde, Carole & Putniņš, Tālis J., 2015. "Dark trading and price discovery," Journal of Financial Economics, Elsevier, vol. 118(1), pages 70-92.
    7. Menkhoff, Lukas & Schmeling, Maik, 2010. "Whose trades convey information? Evidence from a cross-section of traders," Journal of Financial Markets, Elsevier, vol. 13(1), pages 101-128, February.
    8. Daniella Acker & Mathew Stalker & Ian Tonks, 2002. "Daily Closing Inside Spreads and Trading Volumes Around Earnings Announcements," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 29(9‐10), pages 1149-1179.
    9. Peter Koudijs, 2016. "The Boats That Did Not Sail: Asset Price Volatility in a Natural Experiment," Journal of Finance, American Finance Association, vol. 71(3), pages 1185-1226, June.
    10. Chen, Tao, 2019. "Trade-size clustering and price efficiency," Japan and the World Economy, Elsevier, vol. 49(C), pages 195-203.
    11. Gabor Pinter & Chaojun Wang & Junyuan Zou, 2024. "Size Discount and Size Penalty: Trading Costs in Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 37(7), pages 2156-2190.
    12. Richard K. Lyons, 2002. "Foreign exchange: macro puzzles, micro tools," Economic Review, Federal Reserve Bank of San Francisco, pages 51-69.
    13. repec:uts:finphd:34 is not listed on IDEAS
    14. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    15. de Jong, Frank & Nijman, Theo & Roell, Ailsa, 1995. "A comparison of the cost of trading French shares on the Paris Bourse and on SEAQ International," European Economic Review, Elsevier, vol. 39(7), pages 1277-1301, August.
    16. Levin, Eric J. & Wright, Robert E., 2004. "Estimating the profit markup component of the bid-ask spread: evidence from the London Stock Exchange," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 1-19, February.
    17. Zhao, Wandi & Gao, Yang & Wang, Mingjin, 2022. "Measuring liquidity with return volatility: An analytical approach based on heavy-tailed Censored-GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    18. Zeynep Cobandag Guloglu & Cumhur Ekinci, 2022. "Liquidity measurement: A comparative review of the literature with a focus on high frequency," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 41-74, February.
    19. Koopman, S.J.M. & Lai, H.N., 1998. "Modelling bid-ask spreads in competitive dealership markets," Other publications TiSEM 7a193911-dbf2-4831-ac8d-9, Tilburg University, School of Economics and Management.
    20. Bardong, Florian & Bartram, Söhnke M. & Yadav, Pradeep K., 2005. "Informed Trading, Information Asymmetry and Pricing of Information Risk: Empirical Evidence from the NYSE," MPRA Paper 13586, University Library of Munich, Germany, revised 10 Oct 2008.
    21. van Kervel, Vincent & Kwan, Amy & Westerholm, P. Joakim, 2023. "Order splitting and interacting with a counterparty," Journal of Financial Markets, Elsevier, vol. 66(C).

    More about this item

    Keywords

    Bid-ask spread; Feedback trading; Estimation; G10;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:sefpps:v:32:y:2015:i:1:p:98-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.