IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2205.12917.html
   My bibliography  Save this paper

Identification of Auction Models Using Order Statistics

Author

Listed:
  • Yao Luo
  • Ruli Xiao

Abstract

Auction data often contain information on only the most competitive bids as opposed to all bids. The usual measurement error approaches to unobserved heterogeneity are inapplicable due to dependence among order statistics. We bridge this gap by providing a set of positive identification results. First, we show that symmetric auctions with discrete unobserved heterogeneity are identifiable using two consecutive order statistics and an instrument. Second, we extend the results to ascending auctions with unknown competition and unobserved heterogeneity.

Suggested Citation

  • Yao Luo & Ruli Xiao, 2022. "Identification of Auction Models Using Order Statistics," Papers 2205.12917, arXiv.org, revised Apr 2023.
  • Handle: RePEc:arx:papers:2205.12917
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2205.12917
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Emmanuel Guerre & Isabelle Perrigne & Quang Vuong, 2000. "Optimal Nonparametric Estimation of First-Price Auctions," Econometrica, Econometric Society, vol. 68(3), pages 525-574, May.
    2. An, Yonghong, 2017. "Identification of first-price auctions with non-equilibrium beliefs: A measurement error approach," Journal of Econometrics, Elsevier, vol. 200(2), pages 326-343.
    3. Elodie Guerre & I. Perrigne & Q.H. Vuong, 2000. "Optimal nonparametric estimation of first-price auctions [[Estimation nonparamétrique optimale des enchères au premier prix]]," Post-Print hal-02697497, HAL.
    4. Quang Vuong & Sandra Campo & Isabelle Perrigne, 2003. "Asymmetry in first-price auctions with affiliated private values," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 179-207.
    5. Philip A. Haile & Han Hong & Matthew Shum, 2003. "Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions," Cowles Foundation Discussion Papers 1445, Cowles Foundation for Research in Economics, Yale University.
    6. Tatiana Komarova, 2013. "A new approach to identifying generalized competing risks models with application to second‐price auctions," Quantitative Economics, Econometric Society, vol. 4(2), pages 269-328, July.
    7. Philip A. Haile, 2001. "Auctions with Resale Markets: An Application to U.S. Forest Service Timber Sales," American Economic Review, American Economic Association, vol. 91(3), pages 399-427, June.
    8. Philip A Haile & Yuichi Kitamura, 2019. "Unobserved heterogeneity in auctions," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 1-19.
    9. Hu, Yingyao & Sasaki, Yuya, 2017. "Identification Of Paired Nonseparable Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 33(4), pages 955-979, August.
    10. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
    11. Li, Tong & Perrigne, Isabelle & Vuong, Quang, 2000. "Conditionally independent private information in OCS wildcat auctions," Journal of Econometrics, Elsevier, vol. 98(1), pages 129-161, September.
    12. Nianqing Liu & Yao Luo, 2017. "A Nonparametric Test For Comparing Valuation Distributions In First‐Price Auctions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58, pages 857-888, August.
    13. JoonHwan Cho & Yao Luo & Ruli Xiao, 2022. "Deconvolution from Two Order Statistics," Working Papers tecipa-739, University of Toronto, Department of Economics.
    14. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    15. Baldwin, Laura H & Marshall, Robert C & Richard, Jean-Francois, 1997. "Bidder Collusion at Forest Service Timber Sales," Journal of Political Economy, University of Chicago Press, vol. 105(4), pages 657-699, August.
    16. Susan Athey & Philip A. Haile, 2002. "Identification of Standard Auction Models," Econometrica, Econometric Society, vol. 70(6), pages 2107-2140, November.
    17. Xiao, Ruli, 2018. "Identification and estimation of incomplete information games with multiple equilibria," Journal of Econometrics, Elsevier, vol. 203(2), pages 328-343.
    18. An, Yonghong & Hu, Yingyao & Shum, Matthew, 2010. "Estimating first-price auctions with an unknown number of bidders: A misclassification approach," Journal of Econometrics, Elsevier, vol. 157(2), pages 328-341, August.
    19. Elena Krasnokutskaya, 2011. "Identification and Estimation of Auction Models with Unobserved Heterogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(1), pages 293-327.
    20. Jason Allen & Robert Clark & Brent Hickman & Eric Richert, 2019. "Resolving Failed Banks: Uncertainty, Multiple Bidding & Auction Design," Staff Working Papers 19-30, Bank of Canada.
    21. Luo, Yao, 2020. "Unobserved heterogeneity in auctions under restricted stochastic dominance," Journal of Econometrics, Elsevier, vol. 216(2), pages 354-374.
    22. Hu, Yingyao & McAdams, David & Shum, Matthew, 2013. "Identification of first-price auctions with non-separable unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 174(2), pages 186-193.
    23. Philip A. Haile & Elie Tamer, 2003. "Inference with an Incomplete Model of English Auctions," Journal of Political Economy, University of Chicago Press, vol. 111(1), pages 1-51, February.
    24. Joachim Freyberger & Bradley J. Larsen, 2022. "Identification in ascending auctions, with an application to digital rights management," Quantitative Economics, Econometric Society, vol. 13(2), pages 505-543, May.
    25. Matt Shum & Phil Haile & Han Hong, 2003. "Nonparametric Tests for Common Values in First-Price Auctions," Economics Working Paper Archive 501, The Johns Hopkins University,Department of Economics.
    26. Shneyerov, Artyom & Wong, Adam Chi Leung, 2011. "Identification in first-price and Dutch auctions when the number of potential bidders is unobservable," Games and Economic Behavior, Elsevier, vol. 72(2), pages 574-582, June.
    27. Andrés Aradillas‐López & Amit Gandhi & Daniel Quint, 2013. "Identification and Inference in Ascending Auctions With Correlated Private Values," Econometrica, Econometric Society, vol. 81(2), pages 489-534, March.
    28. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    29. Komarova, Tatiana, 2013. "A new approach to identifying generalized competing risks models with application to second-price auctions," LSE Research Online Documents on Economics 50245, London School of Economics and Political Science, LSE Library.
    30. Xiaohong Chen & Han Hong & Denis Nekipelov, 2011. "Nonlinear Models of Measurement Errors," Journal of Economic Literature, American Economic Association, vol. 49(4), pages 901-937, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. JoonHwan Cho & Yao Luo & Ruli Xiao, 2024. "Deconvolution from two order statistics," Papers 2403.17777, arXiv.org.
    2. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    3. Cristián Hernández & Daniel Quint & Christopher Turansick, 2020. "Estimation in English auctions with unobserved heterogeneity," RAND Journal of Economics, RAND Corporation, vol. 51(3), pages 868-904, September.
    4. Joachim Freyberger & Bradley J. Larsen, 2022. "Identification in ascending auctions, with an application to digital rights management," Quantitative Economics, Econometric Society, vol. 13(2), pages 505-543, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yao & Xiao, Ruli, 2023. "Identification of auction models using order statistics," Journal of Econometrics, Elsevier, vol. 236(1).
    2. Luo, Yao, 2020. "Unobserved heterogeneity in auctions under restricted stochastic dominance," Journal of Econometrics, Elsevier, vol. 216(2), pages 354-374.
    3. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    4. An, Yonghong, 2017. "Identification of first-price auctions with non-equilibrium beliefs: A measurement error approach," Journal of Econometrics, Elsevier, vol. 200(2), pages 326-343.
    5. Philip A Haile & Yuichi Kitamura, 2019. "Unobserved heterogeneity in auctions," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 1-19.
    6. Grundl, Serafin & Zhu, Yu, 2024. "Two results on auctions with endogenous entry," Economics Letters, Elsevier, vol. 234(C).
    7. Nianqing Liu & Yao Luo, 2017. "A Nonparametric Test For Comparing Valuation Distributions In First‐Price Auctions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(3), pages 857-888, August.
    8. Lamy, Laurent, 2012. "The econometrics of auctions with asymmetric anonymous bidders," Journal of Econometrics, Elsevier, vol. 167(1), pages 113-132.
    9. Hill, Jonathan B. & Shneyerov, Artyom, 2013. "Are there common values in first-price auctions? A tail-index nonparametric test," Journal of Econometrics, Elsevier, vol. 174(2), pages 144-164.
    10. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    11. Susan Athey & Philip A. Haile, 2006. "Empirical Models of Auctions," NBER Working Papers 12126, National Bureau of Economic Research, Inc.
    12. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    13. Hickman Brent R. & Hubbard Timothy P. & Sağlam Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 67-106, August.
    14. Ma, Jun & Marmer, Vadim & Shneyerov, Artyom, 2019. "Inference for first-price auctions with Guerre, Perrigne, and Vuong’s estimator," Journal of Econometrics, Elsevier, vol. 211(2), pages 507-538.
    15. Nathalie Gimenes & Emmanuel Guerre, 2019. "Nonparametric identification of an interdependent value model with buyer covariates from first-price auction bids," Papers 1910.10646, arXiv.org.
    16. repec:vuw:vuwscr:19224 is not listed on IDEAS
    17. Gimenes, Nathalie & Guerre, Emmanuel, 2020. "Nonparametric identification of an interdependent value model with buyer covariates from first-price auction bids," Journal of Econometrics, Elsevier, vol. 219(1), pages 1-18.
    18. Lorentziadis, Panos L., 2016. "Optimal bidding in auctions from a game theory perspective," European Journal of Operational Research, Elsevier, vol. 248(2), pages 347-371.
    19. JoonHwan Cho & Yao Luo & Ruli Xiao, 2024. "Deconvolution from two order statistics," Papers 2403.17777, arXiv.org.
    20. Stefan Seifert & Silke Hüttel, 2023. "Is there a risk of a winner’s curse in farmland auctions?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(3), pages 1140-1177.
    21. Sağlam, Yiğit, 2012. "Structural Econometric Methods in Auctions: A Guide to the Literature," Working Paper Series 19224, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • D44 - Microeconomics - - Market Structure, Pricing, and Design - - - Auctions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2205.12917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.