IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v176y2013i1p30-45.html
   My bibliography  Save this article

Testing for a break in trend when the order of integration is unknown

Author

Listed:
  • Iacone, Fabrizio
  • Leybourne, Stephen J.
  • Robert Taylor, A.M.

Abstract

Harvey, Leybourne and Taylor [Harvey, D.I., Leybourne, S.J., Taylor, A.M.R. 2009. Simple, robust and powerful tests of the breaking trend hypothesis. Econometric Theory 25, 995–1029] develop a test for the presence of a broken linear trend at an unknown point in the sample whose size is asymptotically robust as to whether the (unknown) order of integration of the data is either zero or one. This test is not size controlled, however, when this order assumes fractional values; its asymptotic size can be either zero or one in such cases. In this paper we suggest a new test, based on a sup-Wald statistic, which is asymptotically size-robust across fractional values of the order of integration (including zero or one). We examine the asymptotic power of the test under a local trend break alternative. The finite sample properties of the test are also investigated.

Suggested Citation

  • Iacone, Fabrizio & Leybourne, Stephen J. & Robert Taylor, A.M., 2013. "Testing for a break in trend when the order of integration is unknown," Journal of Econometrics, Elsevier, vol. 176(1), pages 30-45.
  • Handle: RePEc:eee:econom:v:176:y:2013:i:1:p:30-45
    DOI: 10.1016/j.jeconom.2013.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407613000663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2013.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    2. Robinson, P.M. & Iacone, F., 2005. "Cointegration in fractional systems with deterministic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 263-298.
    3. Javier Hualde & Peter M Robinson, 2003. "Cointegration in Fractional Systems with Unkown Integration Orders," STICERD - Econometrics Paper Series 449, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
    5. repec:hal:journl:peer-00834425 is not listed on IDEAS
    6. P. M. Robinson & J. Hualde, 2003. "Cointegration in Fractional Systems with Unknown Integration Orders," Econometrica, Econometric Society, vol. 71(6), pages 1727-1766, November.
    7. Karim M. Abadir & Walter Distaso & Liudas Giraitis, 2011. "An I() model with trend and cycles," Post-Print hal-00834425, HAL.
    8. Fabio Busetti & Andrew Harvey, 2001. "Testing for the Presence of a Random Walk in Series with Structural Breaks," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(2), pages 127-150, March.
    9. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2007. "Nonstationarity-extended local Whittle estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1353-1384, December.
    10. Robinson, Peter M. & Hualde, Javier, 2003. "Cointegration in fractional systems with unknown integration orders," LSE Research Online Documents on Economics 2223, London School of Economics and Political Science, LSE Library.
    11. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    12. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2009. "Simple, Robust, And Powerful Tests Of The Breaking Trend Hypothesis," Econometric Theory, Cambridge University Press, vol. 25(4), pages 995-1029, August.
    13. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    14. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    15. Abadir, Karim M. & Distaso, Walter & Giraitis, Liudas, 2011. "An I(d) model with trend and cycles," Journal of Econometrics, Elsevier, vol. 163(2), pages 186-199, August.
    16. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    17. Jonathan H. Wright, 1998. "Testing for a Structural Break at Unknown Date with Long‐memory Disturbances," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 369-376, May.
    18. Shimotsu, Katsumi & Phillips, Peter C.B., 2006. "Local Whittle estimation of fractional integration and some of its variants," Journal of Econometrics, Elsevier, vol. 130(2), pages 209-233, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bent Jesper Christensen & Robinson Kruse & Philipp Sibbertsen, 2013. "A unified framework for testing in the linear regression model under unknown order of fractional integration," CREATES Research Papers 2013-35, Department of Economics and Business Economics, Aarhus University.
    2. Jiawen Xu & Pierre Perron, 2013. "Robust testing of time trend and mean with unknown integration order errors Frequency (and Other) Contaminations," Boston University - Department of Economics - Working Papers Series 2013-006, Boston University - Department of Economics.
    3. Juan J. Dolado & Heiko Rachinger & Carlos Velasco, 2022. "LM Tests for Joint Breaks in the Dynamics and Level of a Long-Memory Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 629-650, April.
    4. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2018. "A simple test on structural change in long-memory time series," Economics Letters, Elsevier, vol. 163(C), pages 90-94.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Papers 1805.03807, arXiv.org.
    6. Seong Yeon Chang & Pierre Perron, 2017. "Fractional Unit Root Tests Allowing for a Structural Change in Trend under Both the Null and Alternative Hypotheses," Econometrics, MDPI, vol. 5(1), pages 1-26, January.
    7. Iacone Fabrizio & Leybourne Stephen J. & Robert Taylor A.M., 2017. "Testing for a Change in Mean under Fractional Integration," Journal of Time Series Econometrics, De Gruyter, vol. 9(1), pages 1-8, January.
    8. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    9. Carina Gerstenberger, 2021. "Robust discrimination between long‐range dependence and a change in mean," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(1), pages 34-62, January.
    10. Seong Yeon Chang & Pierre Perron, 2016. "Inference on a Structural Break in Trend with Fractionally Integrated Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 555-574, July.
    11. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    3. Seong Yeon Chang & Pierre Perron, 2017. "Fractional Unit Root Tests Allowing for a Structural Change in Trend under Both the Null and Alternative Hypotheses," Econometrics, MDPI, vol. 5(1), pages 1-26, January.
    4. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    5. Papailias, Fotis & Fruet Dias, Gustavo, 2015. "Forecasting long memory series subject to structural change: A two-stage approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1056-1066.
    6. Christensen, Bent Jesper & Kruse, Robinson & Sibbertsen, Philipp, 2013. "A unified framework for testing in the linear regression model under unknown order of fractional integration," Hannover Economic Papers (HEP) dp-519, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    7. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    8. Javier Hualde & Morten Ørregaard Nielsen, 2022. "Truncated sum-of-squares estimation of fractional time series models with generalized power law trend," CREATES Research Papers 2022-07, Department of Economics and Business Economics, Aarhus University.
    9. Tobias Hartl & Roland Weigand, 2018. "Multivariate Fractional Components Analysis," Papers 1812.09149, arXiv.org, revised Jan 2019.
    10. Cunado, J. & Gil-Alana, L. A. & Perez de Gracia, F., 2004. "Is the US fiscal deficit sustainable?: A fractionally integrated approach," Journal of Economics and Business, Elsevier, vol. 56(6), pages 501-526.
    11. Hualde, Javier, 2006. "Unbalanced Cointegration," Econometric Theory, Cambridge University Press, vol. 22(5), pages 765-814, October.
    12. Hualde, Javier, 2013. "A simple test for the equality of integration orders," Economics Letters, Elsevier, vol. 119(3), pages 233-237.
    13. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    14. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    15. Skrobotov, Anton, 2020. "Survey on structural breaks and unit root tests," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 58, pages 96-141.
    16. Hualde Javier & Iacone Fabrizio, 2012. "First Stage Estimation of Fractional Cointegration," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-32, May.
    17. Javier Hualde, 2012. "A simple test for the equality of integration orders," Documentos de Trabajo - Lan Gaiak Departamento de Economía - Universidad Pública de Navarra 1206, Departamento de Economía - Universidad Pública de Navarra.
    18. Jiawen Xu & Pierre Perron, 2013. "Robust testing of time trend and mean with unknown integration order errors Frequency (and Other) Contaminations," Boston University - Department of Economics - Working Papers Series 2013-006, Boston University - Department of Economics.
    19. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "Integration and Disintegration of EMU Government Bond Markets," Econometrics, MDPI, vol. 9(1), pages 1-17, March.
    20. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.

    More about this item

    Keywords

    Trend break; Fractional integration; Sup-Wald statistic;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:176:y:2013:i:1:p:30-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.