IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v119y2013i3p233-237.html
   My bibliography  Save this article

A simple test for the equality of integration orders

Author

Listed:
  • Hualde, Javier

Abstract

A necessary condition for two time series to be nontrivially cointegrated is the equality of their respective integration orders. Thus, it is standard practice to test for order homogeneity prior to testing for cointegration. Tests for the equality of integration orders are particular cases of more general tests of linear restrictions among memory parameters of different time series, for which asymptotic theory has been developed in parametric and semiparametric settings. However, most tests have been just developed in stationary and invertible settings, and, more importantly, many of them are invalid when the observables are cointegrated (because they involve inversion of an asymptotically singular matrix). We propose a general testing procedure which does not suffer from this serious drawback, and, in addition, it is very simple to compute, it covers the stationary/nonstationary and invertible/noninvertible ranges, and, as we show in a Monte Carlo experiment, it works well in finite samples.

Suggested Citation

  • Hualde, Javier, 2013. "A simple test for the equality of integration orders," Economics Letters, Elsevier, vol. 119(3), pages 233-237.
  • Handle: RePEc:eee:ecolet:v:119:y:2013:i:3:p:233-237
    DOI: 10.1016/j.econlet.2013.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176513001122
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2013.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javier Hualde & Peter M Robinson, 2003. "Cointegration in Fractional Systems with Unkown Integration Orders," STICERD - Econometrics Paper Series 449, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Marinucci, D & Robinson, Peter M., 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    3. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
    4. P. M. Robinson & J. Hualde, 2003. "Cointegration in Fractional Systems with Unknown Integration Orders," Econometrica, Econometric Society, vol. 71(6), pages 1727-1766, November.
    5. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    6. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    7. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    8. Robinson, Peter M. & Hualde, Javier, 2003. "Cointegration in fractional systems with unknown integration orders," LSE Research Online Documents on Economics 2223, London School of Economics and Political Science, LSE Library.
    9. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    10. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    11. Heyde, C. C. & Gay, R., 1993. "Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 45(1), pages 169-182, March.
    12. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    13. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    2. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    3. Abakah, Emmanuel Joel Aikins & Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko, 2021. "Economic policy uncertainty: Persistence and cross-country linkages," Research in International Business and Finance, Elsevier, vol. 58(C).
    4. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
    5. Jose Maria Fernandez-Crehuet & Luis Alberiko Gil-Alana & Cristina Martí Barco, 2020. "Unemployment and Fertility: A Long Run Relationship," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(3), pages 1177-1196, December.
    6. Adebola, Solarin Sakiru & Gil-Alana, Luis A. & Madigu, Godfrey, 2019. "Gold prices and the cryptocurrencies: Evidence of convergence and cointegration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1227-1236.
    7. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," Working Papers hal-04141871, HAL.
    8. Demetrescu, Matei & Kusin, Vladimir & Salish, Nazarii, 2022. "Testing for no cointegration in vector autoregressions with estimated degree of fractional integration," Economic Modelling, Elsevier, vol. 108(C).
    9. Yaya, OlaOluwa S & Gil-Alana, Luis A., 2018. "High and Low Intraday Commodity Prices: A Fractional Integration and Cointegration Approach," MPRA Paper 90518, University Library of Munich, Germany.
    10. Gilles de Truchis & Florent Dubois & Elena Ivona Dumitrescu, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," Working Papers hal-04141882, HAL.
    11. Pierre Perron, 2017. "Unit Roots and Structural Breaks," Econometrics, MDPI, vol. 5(2), pages 1-3, May.
    12. Gilles de Truchis & Elena Ivona Dumitrescu & Florent Dubois, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," EconomiX Working Papers 2019-15, University of Paris Nanterre, EconomiX.
    13. Dettoni, Robinson & Gil-Alana, Luis A. & Yaya, OlaOluwa S., 2024. "Stock market prices and Dividends in the US: Bubbles or Long-run equilibria relationships?," International Review of Financial Analysis, Elsevier, vol. 94(C).
    14. Wang, Bin & Wang, Man & Chan, Ngai Hang, 2015. "Residual-based test for fractional cointegration," Economics Letters, Elsevier, vol. 126(C), pages 43-46.
    15. Man Wang & Ngai Hang Chan, 2016. "Testing for the Equality of Integration Orders of Multiple Series," Econometrics, MDPI, vol. 4(4), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Hualde, 2012. "A simple test for the equality of integration orders," Documentos de Trabajo - Lan Gaiak Departamento de Economía - Universidad Pública de Navarra 1206, Departamento de Economía - Universidad Pública de Navarra.
    2. Hualde, Javier, 2006. "Unbalanced Cointegration," Econometric Theory, Cambridge University Press, vol. 22(5), pages 765-814, October.
    3. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    4. Robinson, P.M. & Iacone, F., 2005. "Cointegration in fractional systems with deterministic trends," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 263-298.
    5. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    6. Lasak, Katarzyna, 2010. "Likelihood based testing for no fractional cointegration," Journal of Econometrics, Elsevier, vol. 158(1), pages 67-77, September.
    7. Nielsen, Morten Orregaard & Shimotsu, Katsumi, 2007. "Determining the cointegrating rank in nonstationary fractional systems by the exact local Whittle approach," Journal of Econometrics, Elsevier, vol. 141(2), pages 574-596, December.
    8. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    9. Hualde, J. & Robinson, P.M., 2007. "Root-n-consistent estimation of weak fractional cointegration," Journal of Econometrics, Elsevier, vol. 140(2), pages 450-484, October.
    10. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.
    11. Wang, Bin & Wang, Man & Chan, Ngai Hang, 2015. "Residual-based test for fractional cointegration," Economics Letters, Elsevier, vol. 126(C), pages 43-46.
    12. Katarzyna Łasak & Carlos Velasco, 2015. "Fractional Cointegration Rank Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 241-254, April.
    13. Cunado, J. & Gil-Alana, L. A. & Perez de Gracia, F., 2004. "Is the US fiscal deficit sustainable?: A fractionally integrated approach," Journal of Economics and Business, Elsevier, vol. 56(6), pages 501-526.
    14. Christensen, Bent Jesper & Nielsen, Morten Orregaard, 2006. "Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting," Journal of Econometrics, Elsevier, vol. 133(1), pages 343-371, July.
    15. Gil-Alana, Luis A. & Yaya, OlaOluwa S., 2014. "The relationship between oil prices and the Nigerian stock market. An analysis based on fractional integration and cointegration," Energy Economics, Elsevier, vol. 46(C), pages 328-333.
    16. Avarucci, Marco & Velasco, Carlos, 2009. "A Wald test for the cointegration rank in nonstationary fractional systems," Journal of Econometrics, Elsevier, vol. 151(2), pages 178-189, August.
    17. Abakah, Emmanuel Joel Aikins & Caporale, Guglielmo Maria & Gil-Alana, Luis Alberiko, 2021. "Economic policy uncertainty: Persistence and cross-country linkages," Research in International Business and Finance, Elsevier, vol. 58(C).
    18. Hualde Javier & Iacone Fabrizio, 2012. "First Stage Estimation of Fractional Cointegration," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-32, May.
    19. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    20. Abbritti, Mirko & Carcel, Hector & Gil-Alana, Luis & Moreno, Antonio, 2023. "Term premium in a fractionally cointegrated yield curve," Journal of Banking & Finance, Elsevier, vol. 149(C).

    More about this item

    Keywords

    Integration orders; Fractional differencing; Fractional cointegration;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:119:y:2013:i:3:p:233-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.