IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-11-00706.html
   My bibliography  Save this article

The tests for the level moment conditions: GMM estimation in a linear dynamic panel data model

Author

Listed:
  • Takuya Hasebe

    (Graduate Center, City University of New York)

Abstract

This paper compares the power of alternative tests for the level moment conditions in GMM estimation of a linear dynamic panel data model. The test statistic calculated conventionally can take on a negative value in finite samples even though it cannot be asymptotically. A straightforward modification makes the test statistic nonnegative. Monte Carlo simulations show that the test can gain power from the modification.

Suggested Citation

  • Takuya Hasebe, 2012. "The tests for the level moment conditions: GMM estimation in a linear dynamic panel data model," Economics Bulletin, AccessEcon, vol. 32(1), pages 412-420.
  • Handle: RePEc:ebl:ecbull:eb-11-00706
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2012/Volume32/EB-12-V32-I1-P37.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Richard Blundell & Stephen Bond, 2000. "GMM Estimation with persistent panel data: an application to production functions," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 321-340.
    2. David Roodman, 2009. "A Note on the Theme of Too Many Instruments," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 135-158, February.
    3. Bowsher, Clive G., 2002. "On testing overidentifying restrictions in dynamic panel data models," Economics Letters, Elsevier, vol. 77(2), pages 211-220, October.
    4. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    5. Matz Dahlberg & Eva Mork & Per Tovmo, 2008. "Power properties of the Sargan test in the presence of measurement errors in dynamic panels," Applied Economics Letters, Taylor & Francis Journals, vol. 15(5), pages 349-353.
    6. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    7. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    8. Hayakawa, Kazuhiko, 2009. "On the effect of mean-nonstationarity in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 153(2), pages 133-135, December.
    9. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    2. Dobbelaere, Sabien & Kiyota, Kozo & Mairesse, Jacques, 2015. "Product and labor market imperfections and scale economies: Micro-evidence on France, Japan and the Netherlands," Journal of Comparative Economics, Elsevier, vol. 43(2), pages 290-322.
    3. Cerina, Fabio & Manca, Fabio, 2018. "Catch Me If You Learn: Development-Specific Education And Economic Growth," Macroeconomic Dynamics, Cambridge University Press, vol. 22(6), pages 1652-1694, September.
    4. David Bartolini & Raffaella Santolini, 2009. "Fiscal Rules and the Opportunistic Behaviour of the Incumbent Politician: Evidence from Italian Municipalities," CESifo Working Paper Series 2605, CESifo.
    5. Jan F. Kiviet & Milan Pleus & Rutger Poldermans, 2014. "Accuracy and efficiency of various GMM inference techniques in dynamic micro panel data models," UvA-Econometrics Working Papers 14-09, Universiteit van Amsterdam, Dept. of Econometrics.
    6. Hayakawa, Kazuhiko, 2019. "Alternative over-identifying restriction test in the GMM estimation of panel data models," Econometrics and Statistics, Elsevier, vol. 10(C), pages 71-95.
    7. Keskinsoy, Bilal, 2017. "Lucas Paradox in the Short-Run," MPRA Paper 78783, University Library of Munich, Germany.
    8. Che, Yi & Lu, Yi & Tao, Zhigang & Wang, Peng, 2013. "The impact of income on democracy revisited," Journal of Comparative Economics, Elsevier, vol. 41(1), pages 159-169.
    9. Jan Kiviet & Milan Pleus & Rutger Poldermans, 2017. "Accuracy and Efficiency of Various GMM Inference Techniques in Dynamic Micro Panel Data Models," Econometrics, MDPI, vol. 5(1), pages 1-54, March.
    10. David Bartolini & Raffaella Santolini, 2012. "Political yardstick competition among Italian municipalities on spending decisions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 213-235, August.
    11. Baharumshah, Ahmad Zubaidi & Slesman, Ly & Wohar, Mark E., 2016. "Inflation, inflation uncertainty, and economic growth in emerging and developing countries: Panel data evidence," Economic Systems, Elsevier, vol. 40(4), pages 638-657.
    12. Juergen Bitzer & Erkan Goeren, 2018. "Foreign Aid and Subnational Development: A Grid Cell Analysis," Working Papers V-407-18, University of Oldenburg, Department of Economics, revised Mar 2018.
    13. Sabien Dobbelaere & Jacques Mairesse, 2010. "Comparing Micro-evidence on Rent Sharing from Three Different Approaches," NBER Working Papers 16220, National Bureau of Economic Research, Inc.
    14. Davide Consoli & Francesco Vona & Francesco Rentocchini, 2016. "That was then, this is now: skills and routinization in the 2000s," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 25(5), pages 847-866.
    15. Bloom, David E. & Canning, David & Kotschy, Rainer & Prettner, Klaus & Schünemann, Johannes, 2024. "Health and economic growth: Reconciling the micro and macro evidence," World Development, Elsevier, vol. 178(C).
    16. Mi Lin & Yum K. Kwan, 2011. "Sectoral Location of FDI in China," The World Economy, Wiley Blackwell, vol. 34, pages 1181-1198, July.
    17. Alfonso Díez-Minguela & Julio Martínez-Galarraga & Daniel A. Tirado Fabregat, 2013. "Why did Spanish regions not converge before the Civil War? Agglomeration and (regional) growth revisited: Spain, 1870-1930," Working Papers. Serie EC 2014-05, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    18. Na Hou & Bo Chen, 2013. "Military Expenditure And Economic Growth In Developing Countries: Evidence From System Gmm Estimates," Defence and Peace Economics, Taylor & Francis Journals, vol. 24(3), pages 183-193, June.
    19. Sèna Kimm Gnangnon, 2023. "Do unilateral trade preferences help reduce poverty in beneficiary countries?," International Journal of Economic Policy Studies, Springer, vol. 17(1), pages 249-288, February.
    20. Gnangnon, Sèna Kimm, 2021. "Effect of the Utilization of Non-Reciprocal Trade Preferences offered by the QUAD on Economic Growth in Beneficiary Countries," EconStor Preprints 242848, ZBW - Leibniz Information Centre for Economics.

    More about this item

    Keywords

    GMM; Dynamic panel data; Overidentifying restrictions test;
    All these keywords.

    JEL classification:

    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-11-00706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.