IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i18p6712-d413791.html
   My bibliography  Save this article

Associating COVID-19 Severity with Urban Factors: A Case Study of Wuhan

Author

Listed:
  • Xin Li

    (School of Architecture and Civil Engineering, Xiamen University, Xiamen 361005, China
    School of Urban Design, Wuhan University, Wuhan 430072, China)

  • Lin Zhou

    (School of Urban Design, Wuhan University, Wuhan 430072, China)

  • Tao Jia

    (School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China)

  • Ran Peng

    (School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan 430074, China)

  • Xiongwu Fu

    (Information Department, Wuhan Land Use and Urban Spatial Planning Research Center, Wuhan 430010, China)

  • Yuliang Zou

    (School of Health Sciences, Wuhan University, Wuhan 430071, China)

Abstract

Wuhan encountered a serious attack in the first round of the coronavirus disease 2019 (COVID-19) pandemic, which has resulted in a public health social impact, including public mental health. Based on the Weibo help data, we inferred the spatial distribution pattern of the epidemic situation and its impacts. Seven urban factors, i.e., urban growth, general hospital, commercial facilities, subway station, land-use mixture, aging ratio, and road density, were selected for validation with the ordinary linear model, in which the former six factors presented a globally significant association with epidemic severity. Then, the geographically weighted regression model (GWR) was adopted to identify their unevenly distributed effects in the urban space. Among the six factors, the distribution and density of major hospitals exerted significant effects on epidemic situation. Commercial facilities appear to be the most prevalently distributed significant factor on epidemic situation over the city. Urban growth, in particular the newly developed residential quarters with high-rise buildings around the waterfront area of Hanyang and Wuchang, face greater risk of the distribution. The influence of subway stations concentrates at the adjacency place where the three towns meet and some near-terminal locations. The aging ratio of the community dominantly affects the hinterland of Hankou to a broader extent than other areas in the city. Upon discovering the result, a series of managerial implications that coordinate various urban factors were proposed. This research may contribute toward developing specific planning and design responses for different areas in the city based on a better understanding of the occurrence, transmission, and diffusion of the COVID-19 epidemic in the metropolitan area.

Suggested Citation

  • Xin Li & Lin Zhou & Tao Jia & Ran Peng & Xiongwu Fu & Yuliang Zou, 2020. "Associating COVID-19 Severity with Urban Factors: A Case Study of Wuhan," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6712-:d:413791
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/18/6712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/18/6712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    2. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    3. Cervero, Robert, 1996. "Mixed land-uses and commuting: Evidence from the American Housing Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 361-377, September.
    4. Daniel P. McMillen, 2004. "Geographically Weighted Regression: The Analysis of Spatially Varying Relationships," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 554-556.
    5. Christopher S. Carlson & Michael A. Eberle & Leonid Kruglyak & Deborah A. Nickerson, 2004. "Mapping complex disease loci in whole-genome association studies," Nature, Nature, vol. 429(6990), pages 446-452, May.
    6. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marija Jevtic & Vlatka Matkovic & Milica Paut Kusturica & Catherine Bouland, 2022. "Build Healthier: Post-COVID-19 Urban Requirements for Healthy and Sustainable Living," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    2. Zijing Ye & Ruisi Li & Jing Wu, 2022. "Dynamic Demand Evaluation of COVID-19 Medical Facilities in Wuhan Based on Public Sentiment," IJERPH, MDPI, vol. 19(12), pages 1-22, June.
    3. Jingjing Wang & Xueying Wu & Ruoyu Wang & Dongsheng He & Dongying Li & Linchuan Yang & Yiyang Yang & Yi Lu, 2021. "Review of Associations between Built Environment Characteristics and Severe Acute Respiratory Syndrome Coronavirus 2 Infection Risk," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    4. Nushrat Nazia & Zahid Ahmad Butt & Melanie Lyn Bedard & Wang-Choi Tang & Hibah Sehar & Jane Law, 2022. "Methods Used in the Spatial and Spatiotemporal Analysis of COVID-19 Epidemiology: A Systematic Review," IJERPH, MDPI, vol. 19(14), pages 1-28, July.
    5. Kangwei Tu & Andras Reith, 2023. "Changes in Urban Planning in Response to Pandemics: A Comparative Review from H1N1 to COVID-19 (2009–2022)," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    6. Qiang Niu & Wanxian Wu & Jie Shen & Jiaxin Huang & Qiling Zhou, 2021. "Relationship between Built Environment and COVID-19 Dispersal Based on Age Stratification: A Case Study of Wuhan," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    7. Alireza Dehghani & Mehdi Alidadi & Ayyoob Sharifi, 2022. "Compact Development Policy and Urban Resilience: A Critical Review," Sustainability, MDPI, vol. 14(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    2. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    3. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    4. Sparks, Kevin & Moehl, Jessica & Weber, Eric & Brelsford, Christa & Rose, Amy, 2022. "Shifting temporal dynamics of human mobility in the United States," Journal of Transport Geography, Elsevier, vol. 99(C).
    5. Miaoyi Li & Lei Dong & Zhenjiang Shen & Wei Lang & Xinyue Ye, 2017. "Examining the Interaction of Taxi and Subway Ridership for Sustainable Urbanization," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    6. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    8. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    9. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    10. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    11. Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    12. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    13. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    14. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    15. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    16. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    17. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    18. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    19. Kyung Hwan Lee & Eun Jeong Ko, 2014. "Relationships between neighbourhood environments and residents' bicycle mode choice: a case study of Seoul," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 18(3), pages 383-395, November.
    20. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6712-:d:413791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.