IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v499y2025ics0304380024002941.html
   My bibliography  Save this article

Community recomposition caused by species extinction in the colonization-competition trade-off model for vegetation

Author

Listed:
  • Nothaaß, Dorian
  • Huth, Andreas

Abstract

Species extinction and the resulting impact on the community composition is a pervasive threat to vegetation ecosystems today. Understanding how the extinction of one or more species affects and threatens biodiversity is challenging. Here, we study the scenario of a sudden species extinction in the colonization-competition trade-off model by assuming that a disturbance eliminates a species on a fleeting time scale. The system then returns to equilibrium, but the equilibrial abundances have changed for all inferior competitors. We use numerical and analytical calculations to show that the sudden extinction of one species results in a large increase in abundance of the next inferior competitor and subsequent additional extinction of the next-but-one inferior species. We present the changes in community composition and diversity using rank abundance distributions and the Shannon index, respectively. In addition to theoretical parameterizations, we use data for grasslands, which are exponentially distributed, where additional species extinctions occur.

Suggested Citation

  • Nothaaß, Dorian & Huth, Andreas, 2025. "Community recomposition caused by species extinction in the colonization-competition trade-off model for vegetation," Ecological Modelling, Elsevier, vol. 499(C).
  • Handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024002941
    DOI: 10.1016/j.ecolmodel.2024.110906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002941
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    2. Freitas, Osmar & Araujo, Sabrina B.L. & Campos, Paulo R.A., 2022. "Speciation in a metapopulation model upon environmental changes," Ecological Modelling, Elsevier, vol. 468(C).
    3. Jane A. Catford & Michael Bode & David Tilman, 2018. "Introduced species that overcome life history tradeoffs can cause native extinctions," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    4. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Han, Jia-Xu & Wang, Rui-Wu, 2023. "Complex interactions promote the frequency of cooperation in snowdrift game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    8. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    9. Stiadle, Thomas I. & Bayliss, Alvin & Volpert, Vladimir A., 2023. "Cyclic Ecological Systems with an Exceptional Species," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    10. Benedikt von Bronk & Sophia Anna Schaffer & Alexandra Götz & Madeleine Opitz, 2017. "Effects of stochasticity and division of labor in toxin production on two-strain bacterial competition in Escherichia coli," PLOS Biology, Public Library of Science, vol. 15(5), pages 1-25, May.
    11. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    12. Damijan Novak & Domen Verber & Jani Dugonik & Iztok Fister, 2023. "Action-Based Digital Characterization of a Game Player," Mathematics, MDPI, vol. 11(5), pages 1-35, March.
    13. Erik Brockbank & Edward Vul, 2021. "Formalizing Opponent Modeling with the Rock, Paper, Scissors Game," Games, MDPI, vol. 12(3), pages 1-20, September.
    14. Itoh, Yoshiaki, 2024. "Coalescence model of rock-paper-scissors particles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    15. Zhong, Linwu & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Species coexistence in spatial cyclic game of five species," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    17. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    19. Verma, Tina & Gupta, Arvind Kumar, 2021. "Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    20. AlAdwani, Mohammad & Saavedra, Serguei, 2022. "Feasibility conditions of ecological models: Unfolding links between model parameters," Ecological Modelling, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024002941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.