IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics0960077923001911.html
   My bibliography  Save this article

How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models

Author

Listed:
  • Menezes, J.
  • Barbalho, R.

Abstract

We study generalised rock–paper–scissors models with an arbitrary odd number N≥5 of species, among which n are weak, with 2≤n≤(N−1)/2. Because of the species’ weakness, the probability of individuals conquering territory in the cyclic spatial game is low. Running stochastic simulations, we study the role of unevenness in the rock–paper–scissors game in spatial patterns and population dynamics, considering diverse models where the weak species are in different positions in the cyclic game order. Studying systems with five and seven species, we discover that the individuals’ spatial organisation arising from the pattern formation process determines the stability of the cyclic game with multiple weak species. Our outcomes show that the presence of species unbalances the spatial distribution of organisms of the same species bringing consequences on territorial dominance, with the predominant species being determined by the position in the cyclic game order. Our simulations elucidate that, in general, the further apart the regions inhabited by different weak species are, the less the coexistence between the species is jeopardised. We show that if multiple weak species occupy adjacent spatial domains, the unevenness in the cyclic game is reinforced, maximising the chances of biodiversity loss. Our discoveries may also be helpful to biologists in comprehending systems where weak species unbalance biodiversity stability.

Suggested Citation

  • Menezes, J. & Barbalho, R., 2023. "How multiple weak species jeopardise biodiversity in spatial rock–paper–scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001911
    DOI: 10.1016/j.chaos.2023.113290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923001911
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin C. Kirkup & Margaret A. Riley, 2004. "Antibiotic-mediated antagonism leads to a bacterial game of rock–paper–scissors in vivo," Nature, Nature, vol. 428(6981), pages 412-414, March.
    2. Tobias Reichenbach & Mauro Mobilia & Erwin Frey, 2007. "Mobility promotes and jeopardizes biodiversity in rock–paper–scissors games," Nature, Nature, vol. 448(7157), pages 1046-1049, August.
    3. Kabir, K.M. Ariful & Tanimoto, Jun, 2021. "The role of pairwise nonlinear evolutionary dynamics in the rock–paper–scissors game with noise," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    4. Igor Volkov & Jayanth R. Banavar & Stephen P. Hubbell & Amos Maritan, 2007. "Patterns of relative species abundance in rainforests and coral reefs," Nature, Nature, vol. 450(7166), pages 45-49, November.
    5. Benjamin Kerr & Margaret A. Riley & Marcus W. Feldman & Brendan J. M. Bohannan, 2002. "Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors," Nature, Nature, vol. 418(6894), pages 171-174, July.
    6. Park, Junpyo & Chen, Xiaojie & Szolnoki, Attila, 2023. "Competition of alliances in a cyclically dominant eight-species population," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Andy Purvis & Andy Hector, 2000. "Getting the measure of biodiversity," Nature, Nature, vol. 405(6783), pages 212-219, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Hsuan-Wei & Cleveland, Colin & Szolnoki, Attila, 2024. "Supporting punishment via taxation in a structured population," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menezes, J. & Moura, B., 2022. "Pattern formation and coarsening dynamics in apparent competition models," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Tenorio, M. & Rangel, E. & Menezes, J., 2022. "Adaptive movement strategy in rock-paper-scissors models," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    3. Yang, Ryoo Kyung & Park, Junpyo, 2023. "Evolutionary dynamics in the cyclic competition system of seven species: Common cascading dynamics in biodiversity," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Bazeia, D. & Bongestab, M. & de Oliveira, B.F. & Szolnoki, A., 2021. "Effects of a pestilent species on the stability of cyclically dominant species," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    6. Bazeia, D. & Bongestab, M. & de Oliveira, B.F., 2022. "Influence of the neighborhood on cyclic models of biodiversity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Zhang, Libin & Yao, Zijun & Wu, Bin, 2021. "Calculating biodiversity under stochastic evolutionary dynamics," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    8. Duan, Xiaofang & Ye, Jimin & Lu, Yikang & Du, Chunpeng & Jang, Bongsoo & Park, Junpyo, 2024. "Does cooperation among conspecifics facilitate the coexistence of species?," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    9. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    10. Griffin, Christopher & Semonsen, Justin & Belmonte, Andrew, 2022. "Generalized Hamiltonian dynamics and chaos in evolutionary games on networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    11. Stiadle, Thomas I. & Bayliss, Alvin & Volpert, Vladimir A., 2023. "Cyclic Ecological Systems with an Exceptional Species," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    12. Tian-Jiao Feng & Jie Mei & Rui-Wu Wang & Sabin Lessard & Yi Tao & Xiu-Deng Zheng, 2022. "Noise-Induced Quasi-Heteroclinic Cycle in a Rock–Paper–Scissors Game with Random Payoffs," Dynamic Games and Applications, Springer, vol. 12(4), pages 1280-1292, December.
    13. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    14. Erik Brockbank & Edward Vul, 2021. "Formalizing Opponent Modeling with the Rock, Paper, Scissors Game," Games, MDPI, vol. 12(3), pages 1-20, September.
    15. Zhong, Linwu & Zhang, Liming & Li, Haihong & Dai, Qionglin & Yang, Junzhong, 2022. "Species coexistence in spatial cyclic game of five species," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    16. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Verma, Tina & Gupta, Arvind Kumar, 2021. "Evolutionary dynamics of rock-paper-scissors game in the patchy network with mutations," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    18. Zhang, Jing & Li, Zhao & Zhang, Jiqiang & Ma, Lin & Zheng, Guozhong & Chen, Li, 2023. "Emergence of oscillatory cooperation in a population with incomplete information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    19. Wang, Z. & Bayliss, A. & Volpert, V.A., 2024. "Competing alliances in a four-species cyclic ecosystem," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    20. Zhang, Zeyu & Bearup, Daniel & Guo, Guanming & Zhang, Helin & Liao, Jinbao, 2022. "Competition modes determine ecosystem stability in rock–paper–scissors games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s0960077923001911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.