IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics030438002200076x.html
   My bibliography  Save this article

Speciation in a metapopulation model upon environmental changes

Author

Listed:
  • Freitas, Osmar
  • Araujo, Sabrina B.L.
  • Campos, Paulo R.A.

Abstract

We propose a metapopulation model to investigate the role of environmental changes in shaping species diversity. The model is studied under the framework of the Fisher geometric model, which assumes the existence of an optimal phenotype in each patch. The phenotypic distance rules out the survivorship of the individuals in a patch to the optimal phenotype. Additionally, we provide our model a genetic ground, such that changes in phenotype are associated with mutational events. One simulates environmental changes as shifts of the optimum phenotype. Quite surprisingly, we find that the pattern of speciation depends only on the net effect of the environmental disturbances in a given time interval, no matter the rate at which the events occur. We also observe that migration has a pivotal role in shaping diversity due to its substantial effects on the genetic distance among individuals at small and intermediate values of the strength of selection.

Suggested Citation

  • Freitas, Osmar & Araujo, Sabrina B.L. & Campos, Paulo R.A., 2022. "Speciation in a metapopulation model upon environmental changes," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s030438002200076x
    DOI: 10.1016/j.ecolmodel.2022.109958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200076X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ilkka Hanski, 1998. "Metapopulation dynamics," Nature, Nature, vol. 396(6706), pages 41-49, November.
    2. Shpak, Max & Ni, Yang & Lu, Jie & Müller, Peter, 2017. "Variance in estimated pairwise genetic distance under high versus low coverage sequencing: The contribution of linkage disequilibrium," Theoretical Population Biology, Elsevier, vol. 117(C), pages 51-63.
    3. M. A. M. de Aguiar & M. Baranger & E. M. Baptestini & L. Kaufman & Y. Bar-Yam, 2009. "Global patterns of speciation and diversity," Nature, Nature, vol. 460(7253), pages 384-387, July.
    4. Eline D. Lorenzen & David Nogués-Bravo & Ludovic Orlando & Jaco Weinstock & Jonas Binladen & Katharine A. Marske & Andrew Ugan & Michael K. Borregaard & M. Thomas P. Gilbert & Rasmus Nielsen & Simon Y, 2011. "Species-specific responses of Late Quaternary megafauna to climate and humans," Nature, Nature, vol. 479(7373), pages 359-364, November.
    5. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," Working Papers id:2494, eSocialSciences.
    6. Luis-Miguel Chevin & Russell Lande & Georgina M Mace, 2010. "Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory," PLOS Biology, Public Library of Science, vol. 8(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    2. Bruno R Ribeiro & Lilian P Sales & Paulo De Marco Jr. & Rafael Loyola, 2016. "Assessing Mammal Exposure to Climate Change in the Brazilian Amazon," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-13, November.
    3. Robert J. Knell & Stephen J. Thackeray, 2016. "Voltinism and resilience to climate-induced phenological mismatch," Climatic Change, Springer, vol. 137(3), pages 525-539, August.
    4. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    5. Harry R Harding & Timothy A C Gordon & Emma Eastcott & Stephen D Simpson & Andrew N Radford & Leigh Simmons, 2019. "Causes and consequences of intraspecific variation in animal responses to anthropogenic noise," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(6), pages 1501-1511.
    6. Greenspoon, Philip B. & Mideo, Nicole, 2017. "Evolutionary rescue of a parasite population by mutation rate evolution," Theoretical Population Biology, Elsevier, vol. 117(C), pages 64-75.
    7. Maldonado-Chaparro, Adriana A. & Read, Dwight W. & Blumstein, Daniel T., 2017. "Can individual variation in phenotypic plasticity enhance population viability?," Ecological Modelling, Elsevier, vol. 352(C), pages 19-30.
    8. Brooks, Wesley R. & Newbold, Stephen C., 2014. "An updated biodiversity nonuse value function for use in climate change integrated assessment models," Ecological Economics, Elsevier, vol. 105(C), pages 342-349.
    9. Michael J. Noonan & Chris Newman & Andrew Markham & Kirstin Bilham & Christina D. Buesching & David W. Macdonald, 2018. "In situ behavioral plasticity as compensation for weather variability: implications for future climate change," Climatic Change, Springer, vol. 149(3), pages 457-471, August.
    10. Anderson, James J. & Gurarie, Eliezer & Bracis, Chloe & Burke, Brian J. & Laidre, Kristin L., 2013. "Modeling climate change impacts on phenology and population dynamics of migratory marine species," Ecological Modelling, Elsevier, vol. 264(C), pages 83-97.
    11. Konstantinos Kougioumoutzis & Ioannis P. Kokkoris & Arne Strid & Thomas Raus & Panayotis Dimopoulos, 2021. "Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    12. Marie Rescan & Daphné Grulois & Enrique Ortega Aboud & Pierre de Villemereuil & Luis-Miguel Chevin, 2021. "Predicting population genetic change in an autocorrelated random environment: Insights from a large automated experiment," PLOS Genetics, Public Library of Science, vol. 17(6), pages 1-23, June.
    13. Matt J. Michel & Huicheng Chien & Collin E. Beachum & Micah G. Bennett & Jason H. Knouft, 2017. "Climate change, hydrology, and fish morphology: predictions using phenotype-environment associations," Climatic Change, Springer, vol. 140(3), pages 563-576, February.
    14. Yahuza Lurwanu & Yan-Ping Wang & Waheed Abdul & Jiasui Zhan & Li-Na Yang, 2020. "Temperature-Mediated Plasticity Regulates the Adaptation of Phytophthora infestans to Azoxystrobin Fungicide," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    15. Davison, Raziel & Stadman, Marc & Jongejans, Eelke, 2019. "Stochastic effects contribute to population fitness differences," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    16. Reid S. Brennan & James A. deMayo & Hans G. Dam & Michael B. Finiguerra & Hannes Baumann & Melissa H. Pespeni, 2022. "Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Karen B Strier & Anthony R Ives, 2012. "Unexpected Demography in the Recovery of an Endangered Primate Population," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    18. Minke B. W. Langenhof & Jan Komdeur, 2013. "Coping with Change: A Closer Look at the Underlying Attributes of Change and the Individual Response to Unstable Environments," Sustainability, MDPI, vol. 5(5), pages 1-25, April.
    19. Fatih Fazlioglu & Justin S. H. Wan, 2021. "Warming matters: alpine plant responses to experimental warming," Climatic Change, Springer, vol. 164(3), pages 1-17, February.
    20. Bram Kuijper & Rufus A Johnstone & Stuart Townley, 2014. "The Evolution of Multivariate Maternal Effects," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s030438002200076x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.