IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v492y2024ics0304380024001248.html
   My bibliography  Save this article

The need for standardization in ecological modeling for decision support: Lessons from ecological risk assessment

Author

Listed:
  • Forbes, Valery E.

Abstract

Ecological models can be powerful tools to inform environmental decision-making by linking empirical data to environmental protection goals. For example, when assessing the risks of chemicals to ecological systems, we generally have laboratory toxicity data for a handful of species, whereas our goal is to ensure the persistence of populations of many species in the field. Population models can help link individual-level toxicity data to likely impacts on population dynamics and increase the ecological realism of risk assessments. Despite a long history of use in fisheries and conservation biology, population models have had limited use in ecological risk assessment. Here I discuss the advantages of using population models to inform ecological risk assessment and management decisions, the challenges in getting them more widely accepted, and the ways that these challenges are being overcome. Improvements in guidance for model development, documentation, evaluation, and visualization are increasing the transparency and reproducibility of models, which is leading to more widespread acceptance of the models by decision-makers. Using such guidance to develop a standardized suite of models that are fit for purpose and internationally accepted could greatly increase their use by regulatory agencies and the regulated industries.

Suggested Citation

  • Forbes, Valery E., 2024. "The need for standardization in ecological modeling for decision support: Lessons from ecological risk assessment," Ecological Modelling, Elsevier, vol. 492(C).
  • Handle: RePEc:eee:ecomod:v:492:y:2024:i:c:s0304380024001248
    DOI: 10.1016/j.ecolmodel.2024.110736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024001248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2013. "Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives," Ecological Modelling, Elsevier, vol. 250(C), pages 25-33.
    2. Hazlerigg, Charles R.E. & Tyler, Charles R. & Lorenzen, Kai & Wheeler, James R. & Thorbek, Pernille, 2014. "Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model," Ecological Modelling, Elsevier, vol. 280(C), pages 76-88.
    3. David Tarazona & Guillermo Tarazona & Jose V. Tarazona, 2021. "A Simplified Population-Level Landscape Model Identifying Ecological Risk Drivers of Pesticide Applications, Part One: Case Study for Large Herbivorous Mammals," IJERPH, MDPI, vol. 18(15), pages 1-22, July.
    4. Mintram, Kate S. & Brown, A. Ross & Maynard, Samuel K. & Liu, Chun & Parker, Sarah-Jane & Tyler, Charles R. & Thorbek, Pernille, 2018. "Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback," Ecological Modelling, Elsevier, vol. 387(C), pages 107-117.
    5. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    2. Vaugeois, Maxime & Venturelli, Paul A. & Hummel, Stephanie L. & Accolla, Chiara & Forbes, Valery E., 2020. "Population context matters: Predicting the effects of metabolic stress mediated by food availability and predation with an agent- and energy budget-based model," Ecological Modelling, Elsevier, vol. 416(C).
    3. Mintram, Kate S. & Brown, A. Ross & Maynard, Samuel K. & Liu, Chun & Parker, Sarah-Jane & Tyler, Charles R. & Thorbek, Pernille, 2018. "Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback," Ecological Modelling, Elsevier, vol. 387(C), pages 107-117.
    4. Accolla, Chiara & Vaugeois, Maxime & Rueda-Cediel, Pamela & Moore, Adrian & Marques, Gonçalo M. & Marella, Purvaja & Forbes, Valery E., 2020. "DEB-tox and Data Gaps: Consequences for individual-level outputs," Ecological Modelling, Elsevier, vol. 431(C).
    5. Strauss, Tido & Kulkarni, Devdutt & Preuss, Thomas G. & Hammers-Wirtz, Monika, 2016. "The secret lives of cannibals: Modelling density-dependent processes that regulate population dynamics in Chaoborus crystallinus," Ecological Modelling, Elsevier, vol. 321(C), pages 84-97.
    6. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    7. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    8. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    9. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    10. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    11. Grechi, Laura & Franco, Antonio & Palmeri, Luca & Pivato, Alberto & Barausse, Alberto, 2016. "An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics," Ecological Modelling, Elsevier, vol. 332(C), pages 42-58.
    12. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    13. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    14. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    15. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    16. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    17. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    18. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    19. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    20. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:492:y:2024:i:c:s0304380024001248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.