IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v250y2013icp25-33.html
   My bibliography  Save this article

Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives

Author

Listed:
  • Chen, Shaoqing
  • Chen, Bin
  • Fath, Brian D.

Abstract

This paper reviews state-of-the-art models developed for ecological risk assessment and presents a system-oriented perspective for holistic risk evaluation and management. Ecological risk assessment (ERA), which is aimed at appraising a wide range of undesirable impacts on ecosystems exposed to a possible eco-environmental hazard, has been highly recommended for environmental decision-making. The existing system-based eco-risk models at different levels of hierarchical organization are reviewed, including food web-based models, ecosystem-based models and socio-ecological models are reviewed. Based on this inspection, an integrated framework characterizing problem formulation, risk characterization and risk assessment is depicted to illumine future ecological risk assessments. The possibility of integrating the various ERA modeling systems is addressed through examining the interconnections between models shown within the context of our diagrams. Furthermore, some refinements of the current system-level techniques are proposed to meet the requirements of risk evaluation in a holistic and regulatory context. We conclude that assessing ecological risk by using system-based models at different levels of organization in a combined way is an evolutionary step for the application of risk evaluation in environmental management.

Suggested Citation

  • Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2013. "Ecological risk assessment on the system scale: A review of state-of-the-art models and future perspectives," Ecological Modelling, Elsevier, vol. 250(C), pages 25-33.
  • Handle: RePEc:eee:ecomod:v:250:y:2013:i:c:p:25-33
    DOI: 10.1016/j.ecolmodel.2012.10.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.10.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suter, Glenn II, 1995. "Adapting ecological risk assessment for ecosystem valuation," Ecological Economics, Elsevier, vol. 14(2), pages 137-141, August.
    2. Glenn W. Suter II, 2000. "Generic Assessment Endpoints Are Needed for Ecological Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 20(2), pages 173-178, April.
    3. ., 2006. "Vulnerability and Coping," Chapters, in: David Alexander Clark (ed.), The Elgar Companion to Development Studies, chapter 127, Edward Elgar Publishing.
    4. Christian, Robert R. & Brinson, Mark M. & Dame, James K. & Johnson, Galen & Peterson, Charles H. & Baird, Daniel, 2009. "Ecological network analyses and their use for establishing reference domain in functional assessment of an estuary," Ecological Modelling, Elsevier, vol. 220(22), pages 3113-3122.
    5. Chen, G.Q. & Zeng, L. & Wu, Z., 2010. "An ecological risk assessment model for a pulsed contaminant emission into a wetland channel flow," Ecological Modelling, Elsevier, vol. 221(24), pages 2927-2937.
    6. Raghu, S. & Dhileepan, K. & Scanlan, J.C., 2007. "Predicting risk and benefit a priori in biological control of invasive plant species: A systems modelling approach," Ecological Modelling, Elsevier, vol. 208(2), pages 247-262.
    7. Li, Y. & Chen, B. & Yang, Z.F., 2009. "Ecological network analysis for water use systems—A case study of the Yellow River Basin," Ecological Modelling, Elsevier, vol. 220(22), pages 3163-3173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qizhi Wang & Maofang Gao & Huijie Zhang, 2022. "Agroecological Efficiency Evaluation Based on Multi-Source Remote Sensing Data in a Typical County of the Tibetan Plateau," Land, MDPI, vol. 11(4), pages 1-24, April.
    2. Li Li & Xiaoping Zhou & Lan Yang & Jinglong Duan & Zhuo Zeng, 2022. "Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone," Sustainability, MDPI, vol. 14(9), pages 1-17, May.
    3. Zhongfa Zhou & Weiquan Zhao & Sisi Lv & Denghong Huang & Zulun Zhao & Yaopeng Sun, 2023. "Spatiotemporal Transfer of Source-Sink Landscape Ecological Risk in a Karst Lake Watershed Based on Sub-Watersheds," Land, MDPI, vol. 12(7), pages 1-19, July.
    4. Andrzej Białas & Artur Kozłowski, 2024. "Computer-Aided Planning for Land Development of Post-Mining Degraded Areas," Sustainability, MDPI, vol. 16(4), pages 1-30, February.
    5. Hui Di & Xingpeng Liu & Jiquan Zhang & Zhijun Tong & Meichen Ji, 2018. "The Spatial Distributions and Variations of Water Environmental Risk in Yinma River Basin, China," IJERPH, MDPI, vol. 15(3), pages 1-14, March.
    6. Liu, Wen & Chen, Weiping & Peng, Chi, 2014. "Assessing the effectiveness of green infrastructures on urban flooding reduction: A community scale study," Ecological Modelling, Elsevier, vol. 291(C), pages 6-14.
    7. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    8. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2015. "Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 78-92.
    9. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    10. Hao Liu & Haiguang Hao & Lihui Sun & Tingting Zhou, 2022. "Spatial–Temporal Evolution Characteristics of Landscape Ecological Risk in the Agro-Pastoral Region in Western China: A Case Study of Ningxia Hui Autonomous Region," Land, MDPI, vol. 11(10), pages 1-23, October.
    11. Leli Zong & Ming Zhang & Zi Chen & Xiaonan Niu & Guoguang Chen & Jie Zhang & Mo Zhou & Hongying Liu, 2023. "Ecological Risk Assessment of Geological Disasters Based on Probability-Loss Framework: A Case Study of Fujian, China," IJERPH, MDPI, vol. 20(5), pages 1-19, March.
    12. Forbes, Valery E., 2024. "The need for standardization in ecological modeling for decision support: Lessons from ecological risk assessment," Ecological Modelling, Elsevier, vol. 492(C).
    13. Chen, Shaoqing & Chen, Bin, 2015. "Urban energy consumption: Different insights from energy flow analysis, input–output analysis and ecological network analysis," Applied Energy, Elsevier, vol. 138(C), pages 99-107.
    14. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    15. Andrzej Bialas, 2022. "Towards a Software Tool Supporting Decisions in Planning Heap Revitalization Processes," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
    16. Grechi, Laura & Franco, Antonio & Palmeri, Luca & Pivato, Alberto & Barausse, Alberto, 2016. "An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics," Ecological Modelling, Elsevier, vol. 332(C), pages 42-58.
    17. Liu, Junguo & Kattel, Giri & Arp, Hans Peter H. & Yang, Hong, 2015. "Towards threshold-based management of freshwater ecosystems in the context of climate change," Ecological Modelling, Elsevier, vol. 318(C), pages 265-274.
    18. Liu, Yating & Chen, Bin, 2020. "Water-energy scarcity nexus risk in the national trade system based on multiregional input-output and network environ analyses," Applied Energy, Elsevier, vol. 268(C).
    19. Peng Tian & Jialin Li & Hongbo Gong & Ruiliang Pu & Luodan Cao & Shuyao Shao & Zuoqi Shi & Xiuli Feng & Lijia Wang & Riuqing Liu, 2019. "Research on Land Use Changes and Ecological Risk Assessment in Yongjiang River Basin in Zhejiang Province, China," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    20. Razieh Doregar Zavareh & Tooraj Dana & Emad Roayaei & Seyed Massoud Monavari & Seyed Ali Jozi, 2022. "The Environmental Risk Assessment of Fire and Explosion in Storage Tanks of Petroleum Products," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    21. Solovjova, N.V., 2019. "Ecological risk modelling in developing resources of ecosystems characterized by varying vulnerability levels," Ecological Modelling, Elsevier, vol. 406(C), pages 60-72.
    22. Yang, Siyuan & Fath, Brian & Chen, Bin, 2016. "Ecological network analysis of embodied particulate matter 2.5 – A case study of Beijing," Applied Energy, Elsevier, vol. 184(C), pages 882-888.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Yang, Zhifeng & Mao, Xufeng, 2011. "Wetland system network analysis for environmental flow allocations in the Baiyangdian Basin, China," Ecological Modelling, Elsevier, vol. 222(20), pages 3785-3794.
    3. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    4. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    5. Mao, Xufeng & Yang, Zhifeng, 2011. "Functional assessment of interconnected aquatic ecosystems in the Baiyangdian Basin—An ecological-network-analysis based approach," Ecological Modelling, Elsevier, vol. 222(23), pages 3811-3820.
    6. Tang, P.Z. & Liu, J.Z. & Lu, H.W. & Wang, Z. & He, L., 2017. "Information-based Network Environ Analysis for Ecological Risk Assessment of heavy metals in soils," Ecological Modelling, Elsevier, vol. 344(C), pages 17-28.
    7. Tol, Richard S.J. & Yohe, Gary W., 2009. "The Stern Review: A deconstruction," Energy Policy, Elsevier, vol. 37(3), pages 1032-1040, March.
    8. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    9. Chiara M. Travisi & Peter Nijkamp, 2009. "Managing environmental risk in agriculture: a systematic perspective on the potential of quantitative policy-oriented risk valuation," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 11(1/2/3), pages 27-46.
    10. Li, Lu & Shi, Zhi-Hua & Yin, Wei & Zhu, Dun & Ng, Sai Leung & Cai, Chong-Fa & Lei, A-Lin, 2009. "A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China," Ecological Modelling, Elsevier, vol. 220(23), pages 3439-3447.
    11. Chen, Shaoqing & Chen, Bin & Fath, Brian D., 2015. "Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 78-92.
    12. Azeem, Muhammad Masood & Mugera, Amin W. & Schilizzi, Steven, 2016. "Poverty and vulnerability in the Punjab, Pakistan: A multilevel analysis," Journal of Asian Economics, Elsevier, vol. 44(C), pages 57-72.
    13. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    14. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    15. Borrett, S.R. & Freeze, M.A. & Salas, A.K., 2011. "Equivalence of the realized input and output oriented indirect effects metrics in Ecological Network Analysis," Ecological Modelling, Elsevier, vol. 222(13), pages 2142-2148.
    16. Deehr, Rebecca A. & Luczkovich, Joseph J. & Hart, Kevin J. & Clough, Lisa M. & Johnson, Beverly J. & Johnson, Jeffrey C., 2014. "Using stable isotope analysis to validate effective trophic levels from Ecopath models of areas closed and open to shrimp trawling in Core Sound, NC, USA," Ecological Modelling, Elsevier, vol. 282(C), pages 1-17.
    17. Jiali Huang & Robert E Ulanowicz, 2014. "Ecological Network Analysis for Economic Systems: Growth and Development and Implications for Sustainable Development," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    18. Kontogianni, Areti & Luck, Gary W. & Skourtos, Michalis, 2010. "Valuing ecosystem services on the basis of service-providing units: A potential approach to address the 'endpoint problem' and improve stated preference methods," Ecological Economics, Elsevier, vol. 69(7), pages 1479-1487, May.
    19. Xufeng Mao & Donghai Yuan & Xiaoyan Wei & Qiong Chen & Chenling Yan & Liansheng He, 2015. "Network Analysis for a Better Water Use Configuration in the Baiyangdian Basin, China," Sustainability, MDPI, vol. 7(2), pages 1-12, February.
    20. David C. Cook & Jean-Philippe Aurambout & Oscar N. Villalta & Shuang Liu & Jacqueline Edwards & Savi Maharaj, 2016. "A bio-economic ‘war game’ model to simulate plant disease incursions and test response strategies at the landscape scale," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 37-48, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:250:y:2013:i:c:p:25-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.