IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v250y2013icp338-351.html
   My bibliography  Save this article

Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails

Author

Listed:
  • Meli, Mattia
  • Auclerc, Apolline
  • Palmqvist, Annemette
  • Forbes, Valery E.
  • Grimm, Volker

Abstract

Contamination of soil with toxic heavy metals poses a major threat to the environment and human health. Anthropogenic sources include smelting of ores, municipal wastes, fertilizers, and pesticides. In assessing soil quality and the environmental and ecological risk of contamination with heavy metals, often homogeneous contamination of the soil is assumed. However, soils are very heterogeneous environments. Consequently, both contamination and the response of soil organisms can be assumed to be heterogeneous. This might have consequences for the exposure of soil organisms and for the extrapolation of risk from the individual to the population level. Therefore, to explore how soil contamination of different spatial heterogeneity affects population dynamics of soil invertebrates, we developed a spatially explicit individual-based model of the springtail, Folsomia candida, a standard test species for ecotoxicological risk assessment. In the model, individuals were assumed to sense and avoid contaminated habitat with a certain probability that depends on contamination level. Avoidance of contaminated areas thus influenced the individuals’ movement and feeding, their exposure, and in turn all other biological processes underlying population dynamics. Model rules and parameters were based on data from the literature, or were determined via pattern-oriented modelling. The model correctly predicted several patterns that were not used for model design and calibration. Simulation results showed that the ability of the individuals to detect and avoid the toxicant, combined with the presence of clean habitat patches which act as “refuges”, made equilibrium population size due to toxic effects less sensitive to increases in toxicant concentration. Additionally, the level of heterogeneity among patches of soil (i.e. the difference in concentration) was important: at the same average concentration, a homogeneously contaminated scenario was the least favourable habitat, while higher levels of heterogeneity corresponded to higher population growth rate and equilibrium size. Our model can thus be used as a tool for extrapolating from short-term effects at the individual level to long-term effects at the population level under more realistic conditions. It can thus be used to develop and extrapolate from standard ecotoxicological tests in the laboratory to ecological risk assessments.

Suggested Citation

  • Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
  • Handle: RePEc:eee:ecomod:v:250:y:2013:i:c:p:338-351
    DOI: 10.1016/j.ecolmodel.2012.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012005479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Westerberg, Lars & Lindström, Tom & Nilsson, Elna & Wennergren, Uno, 2008. "The effect on dispersal from complex correlations in small-scale movement," Ecological Modelling, Elsevier, vol. 213(2), pages 263-272.
    2. Körner, Katrin & Jeltsch, Florian, 2008. "Detecting general plant functional type responses in fragmented landscapes using spatially-explicit simulations," Ecological Modelling, Elsevier, vol. 210(3), pages 287-300.
    3. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grimm, Volker & Augusiak, Jacqueline & Focks, Andreas & Frank, Béatrice M. & Gabsi, Faten & Johnston, Alice S.A. & Liu, Chun & Martin, Benjamin T. & Meli, Mattia & Radchuk, Viktoriia & Thorbek, Pernil, 2014. "Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE," Ecological Modelling, Elsevier, vol. 280(C), pages 129-139.
    2. Meli, Mattia & Palmqvist, Annemette & Forbes, Valery E. & Groeneveld, Jürgen & Grimm, Volker, 2014. "Two pairs of eyes are better than one: Combining individual-based and matrix models for ecological risk assessment of chemicals," Ecological Modelling, Elsevier, vol. 280(C), pages 40-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herberich, Maximiliane Marion & Gayler, Sebastian & Anand, Madhur & Tielbörger, Katja, 2017. "Hydrological niche segregation of plant functional traits in an individual-based model," Ecological Modelling, Elsevier, vol. 356(C), pages 14-24.
    2. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    3. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    4. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    5. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    6. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    7. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    8. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    9. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    10. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    11. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    12. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    13. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    14. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    15. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    16. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    17. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    18. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    19. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).
    20. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:250:y:2013:i:c:p:338-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.