IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp462-476.html
   My bibliography  Save this article

Exergy-based ecological indicators: From Thermo-Economics to cumulative exergy consumption to Thermo-Ecological Cost and Extended Exergy Accounting

Author

Listed:
  • Sciubba, Enrico

Abstract

This paper presents a summary of the conceptual development and the practical applications of exergy-based Environmental Indicators. After a brief historical introduction, the two most popular methods are presented and discussed: the Exergo-Environmental Analysis (here TEA, as a memento of Jan Szargut's original denomination “Thermo-Ecological Analysis”, currently adopted also by Valero's school) and the Extended Exergy Accounting (EEA). Both emerged from Szargut's idea of the existence of a consumption index, the Cumulative Exergy Consumption (CExC), which can be used to quantify the consumption of primary resources “embodied” in a final product or service. The extension introduced by both methods with respect to CExC consists in the explicit inclusion in the exergy budget of one or more of the Externalities, lumped in the original CExC formulation into the exergetic material contents of the single commodities. The differences between the three formulations are obviously reflected in the numerical values of the resulting indicators. The Thermo-Ecological Cost (TEC) and the CExC differ because of the inclusion in the former of the exergetic resources that reflect the “penalty” in the use of primary non-renewable consumption caused by the anthropic intervention. The CExC index and the Extended Exergy Cost EEC differ because the latter explicitly includes in the calculation a “Labour and Capital equivalent exergy consumption” that allows for the survival of the individuals in a given region according to the respective life standards (variable in space and time). Another difference is the way the Environmental Externality is computed: while TEA takes an ex-post assessment, EEA introduces a calculation of the -ideal or real-remediation costs.

Suggested Citation

  • Sciubba, Enrico, 2019. "Exergy-based ecological indicators: From Thermo-Economics to cumulative exergy consumption to Thermo-Ecological Cost and Extended Exergy Accounting," Energy, Elsevier, vol. 168(C), pages 462-476.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:462-476
    DOI: 10.1016/j.energy.2018.11.101
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.101?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sciubba, Enrico & Zullo, Federico, 2014. "An exergy-based analysis of the co-evolution of different species sharing common resources," Ecological Modelling, Elsevier, vol. 273(C), pages 277-283.
    2. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    3. Sciubba, Enrico, 2011. "A revised calculation of the econometric factors α- and β for the Extended Exergy Accounting method," Ecological Modelling, Elsevier, vol. 222(4), pages 1060-1066.
    4. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    5. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    6. Ptasinski, K.J. & Koymans, M.N. & Verspagen, H.H.G., 2006. "Performance of the Dutch Energy Sector based on energy, exergy and Extended Exergy Accounting," Energy, Elsevier, vol. 31(15), pages 3135-3144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qingchun & Xu, Simin & Zhang, Jinliang & Liu, Chenglin & Zhang, Dawei & Zhou, Huairong & Mei, Shumei & Gao, Minglin & Liu, Hongyan, 2021. "Thermodynamic and techno-economic analyses of a novel integrated process of coal gasification and methane tri-reforming to ethylene glycol with low carbon emission and high efficiency," Energy, Elsevier, vol. 229(C).
    2. Katharina Hecht & Abraham Ortega Reboso & Michelle van der Vegt & Jaco Appelman & Maibritt Pedersen Zari, 2024. "Ecologically Regenerative Building Systems through Exergy Efficiency: Designing for Structural Order and Ecosystem Services," Land, MDPI, vol. 13(9), pages 1-18, August.
    3. Lukas Kriechbaum & Thomas Kienberger, 2020. "Optimal Municipal Energy System Design and Operation Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(1), pages 1-28, January.
    4. Nakhaii, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel & Sciubba, Enrico, 2024. "Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis," Ecological Modelling, Elsevier, vol. 488(C).
    5. Zhang, Qiongyin & Xiao, Jun & Hao, Jingwen, 2023. "Cumulative exergy analysis of lignocellulosic biomass to bio-jet fuel through aqueous-phase conversion with different lignin conversion pathways," Energy, Elsevier, vol. 265(C).
    6. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    7. Umberto Lucia & Debora Fino & Giulia Grisolia, 2022. "A thermoeconomic indicator for the sustainable development with social considerations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2022-2036, February.
    8. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    9. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    10. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    2. Qi, Hai & Dong, Zhiliang & Dong, Shaohui & Sun, Xiaotian & Zhao, Yiran & Li, Yu, 2021. "Extended exergy accounting for smelting and pressing of metals industry in China," Resources Policy, Elsevier, vol. 74(C).
    3. Enrico Sciubba, 2012. "A Thermodynamically Correct Treatment of Externalities with an Exergy-Based Numeraire," Sustainability, MDPI, vol. 4(5), pages 1-25, May.
    4. Song, Dan & Lin, Ling & Wu, Ye, 2019. "Extended exergy accounting for a typical cement industry in China," Energy, Elsevier, vol. 174(C), pages 678-686.
    5. Yang, J. & Chen, B., 2014. "Extended exergy-based sustainability accounting of a household biogas project in rural China," Energy Policy, Elsevier, vol. 68(C), pages 264-272.
    6. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    7. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2017. "Do the Different Exergy Accounting Methodologies Provide Consistent or Contradictory Results? A Case Study with the Portuguese Agricultural, Forestry and Fisheries Sector," Energies, MDPI, vol. 10(8), pages 1-31, August.
    8. Ricardo Manso & Tânia Sousa & Tiago Domingos, 2018. "The Way Forward in Quantifying Extended Exergy Efficiency," Energies, MDPI, vol. 11(10), pages 1-32, September.
    9. Alfonso Biondi & Enrico Sciubba, 2021. "Extended Exergy Analysis (EEA) of Italy, 2013–2017," Energies, MDPI, vol. 14(10), pages 1-21, May.
    10. Dai, Jing & Fath, Brian & Chen, Bin, 2012. "Constructing a network of the social-economic consumption system of China using extended exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4796-4808.
    11. Rocco, M.V. & Colombo, E. & Sciubba, E., 2014. "Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting method," Applied Energy, Elsevier, vol. 113(C), pages 1405-1420.
    12. Diaz-Mendez, S.E. & Sierra-Grajeda, J.M.T. & Hernandez-Guerrero, A. & Rodriguez-Lelis, J.M., 2013. "Entropy generation as an environmental impact indicator and a sample application to freshwater ecosystems eutrophication," Energy, Elsevier, vol. 61(C), pages 234-239.
    13. An, Qier & An, Haizhong & Wang, Lang & Huang, Xuan, 2014. "Structural and regional variations of natural resource production in China based on exergy," Energy, Elsevier, vol. 74(C), pages 67-77.
    14. Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
    15. Dai, Jing & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2015. "Sustainability-based economic and ecological evaluation of a rural biogas-linked agro-ecosystem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 347-355.
    16. Seckin, C. & Sciubba, E. & Bayulken, A.R., 2012. "An application of the extended exergy accounting method to the Turkish society, year 2006," Energy, Elsevier, vol. 40(1), pages 151-163.
    17. Biondi, Alfonso, 2022. "A contribution to the search for a thermodynamics-based sustainability indicator: Extended Exergy Analysis of the Italian system (1990–2012) and comparison with other indicators," Energy, Elsevier, vol. 244(PB).
    18. Mechthild Donner & Anne Verniquet & Jan Broeze & Katrin Kayser & Hugo de Vries, 2021. "Critical success and risk factors for circular business models valorising agricultural waste and by-products," Post-Print hal-03004851, HAL.
    19. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    20. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:462-476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.