IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v180y2020ics0308521x19308935.html
   My bibliography  Save this article

Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran

Author

Listed:
  • Amiri, Zahra
  • Asgharipour, Mohammad Reza
  • Campbell, Daniel E.
  • Armin, Mohammad

Abstract

Extended exergy analysis (EEA) is a novel method in evaluation of agricultural ecosystems. In this study, a comprehensive analysis of the sustainability of an agricultural system was carried out using this method. Specifically, we looked for sustainable patterns of canola production by performing EEAs of two canola production systems, commercial and traditional, located in Khorramabd, Iran using data from the 2017–2018 crop year. The EEA of these two systems showed that the exergy of the environmental remediation cost (EEE) for the traditional system was less than that of the commercial system by 2.69 × 104 MJ ha−1. Accordingly, the ecological sustainability of the traditional system was found to be two times higher than the commercial system. In contrast, the values of thermodynamic indicators such as the capital conversion factor of the annual monetary value of product sales (KcapEEA), the extended exergy efficiency (ŊEEA), and the cumulative degree of perfection (CDP), respectively, indicate the higher economic value, the higher thermodynamic efficiency, and the greater optimality of the commercial system compared to the traditional system. The high consumption of inputs led to increased cumulative exergy consumption (CExC) in the traditional system. The high amount of CExC in the traditional system caused its thermodynamic indices to decrease. On the other hand, the high consumption of resources such as chemical fertilizers caused the EEE of the commercial system to increase. Therefore, based on the results of the EEAs performed in this study, we recommend designing new patterns for managing agricultural production systems, whereby through choosing the appropriate type and amount of inputs for each production system and by employing the required knowledge and technology for optimum production, the costs of environmental remediation will be reduced, and the thermodynamic-economic indexes will be improved.

Suggested Citation

  • Amiri, Zahra & Asgharipour, Mohammad Reza & Campbell, Daniel E. & Armin, Mohammad, 2020. "Extended exergy analysis (EAA) of two canola farming systems in Khorramabad, Iran," Agricultural Systems, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:agisys:v:180:y:2020:i:c:s0308521x19308935
    DOI: 10.1016/j.agsy.2020.102789
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X19308935
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2020.102789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, Sherman & Willenbockel, Dirk & Ahmed, Hashim & Dorosh, Paul, 2010. "Implications of food production and price shocks for household welfare in Ethiopia: a general equilibrium analysis," MPRA Paper 39533, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Petar Sabev Varbanov & Hon Huin Chin & Alexandra-Elena Plesu Popescu & Stanislav Boldyryev, 2020. "Thermodynamics-Based Process Sustainability Evaluation," Energies, MDPI, vol. 13(9), pages 1-28, April.
    2. Mohammadali Kiehbadroudinezhad & Adel Merabet & Homa Hosseinzadeh-Bandbafha, 2021. "Optimization of Wind Energy Battery Storage Microgrid by Division Algorithm Considering Cumulative Exergy Demand for Power-Water Cogeneration," Energies, MDPI, vol. 14(13), pages 1-20, June.
    3. Ahmadi, Mohammad Mahdi & Keyhani, Alireza & Rosen, Marc A. & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Towards sustainable net-zero districts using the extended exergy accounting concept," Renewable Energy, Elsevier, vol. 197(C), pages 747-764.
    4. Zadehdabagh, Nasim & Monavari, Seyed Masoud & Kargari, Nargess & Taghavi, Lobat & Pirasteh, Saeid, 2022. "Sustainability of agroecosystems by indices: A comparative study between indicators of ecological footprint sustainability and emergy analysis; a case study in Dez catchment, Iran," Ecological Modelling, Elsevier, vol. 474(C).
    5. Liu, Jianrui & Kua, Harn Wei & Wang, Chi-Hwa & Tong, Yen Wah & Zhang, Jingxin & Peng, Yinghong, 2023. "Extended exergy accounting theory to design waste-to-energy management system under uncertainty," Energy, Elsevier, vol. 278(PB).
    6. Liu, J. & Goel, A. & Kua, H.W. & Wang, C.H. & Peng, Y.H., 2021. "Evaluating the urban metabolism sustainability of municipal solid waste management system: An extended exergy accounting and indexing perspective," Applied Energy, Elsevier, vol. 300(C).
    7. Nakhaii, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel & Sciubba, Enrico, 2024. "Evaluating ecological sustainability of mechanized and traditional systems of damaskrose production using extended exergy analysis," Ecological Modelling, Elsevier, vol. 488(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sherman Robinson & Dirk Willenbockel & Kenneth Strzepek, 2012. "A Dynamic General Equilibrium Analysis of Adaptation to Climate Change in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 489-502, August.
    2. Sherman Robinson & Dirk Willenbockel & Kenneth Strzepek, 2012. "A Dynamic General Equilibrium Analysis of Adaptation to Climate Change in Ethiopia," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 489-502, August.
    3. Evans, David & Ghelani, Niyati, 2013. "Diagrammatic Back of the Envelope (BOTE) Model for One Country Two Factors and Four Commodities (124) with Illustrations from full Ethiopia CGE model and Showing HOS Origin and 123 Alternative," Conference papers 332371, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    4. Vanzetti, David & Huong, Pham Lan, 2011. "A Comparison of the Impacts of Vietnam’s Free Trade Agreements," Conference papers 332117, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:180:y:2020:i:c:s0308521x19308935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.