IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v488y2024ics0304380023003034.html
   My bibliography  Save this article

Resource objective wildfire leveraged to restore old growth forest structure while stabilizing carbon stocks in the southwestern United States

Author

Listed:
  • Young, Jesse D.
  • Ager, Alan A.

Abstract

Wildfire futures and aboveground carbon (C) dynamics associated with forest restoration programs that integrate resource objective wildfire as part of a larger treatment strategy are not well understood. Using simulation modeling, we examined alternative forest and fuel management strategies on a 237,218-ha study area within a 778,000-ha landscape that is a high priority target for federal restoration programs. We simulated two wildfire management scenarios combined with three levels of conventional forest restoration treatments over 64 years using a detailed landscape disturbance and succession model developed in prior work. We found accelerated forest restoration used in concert with resource objective wildfire was the most effective at returning old growth forest structure, while stabilizing aboveground C stocks and restoring the fire return interval to its historic range of variation. In scenarios without forest restoration, the continued practice of resource objective wildfires during shoulder fire seasons reduced summer emissions in a negative feedback loop. In the short term, scenarios without forest restoration increased live tree C, but also increased the likelihood of C loss during wildfire activity driven by extreme fire weather. We found scenarios most effective at restoring fire-excluded pine forests to their historical old growth conditions came at a short-term cost of lost C, but with the long-term benefit of substantially increasing fire-resistant live tree C. Our results inform how local decision making can best balance competing goals of sequestering C, and stabilizing C stocks in frequent-fire pine forests using the principles of local fire ecology to restore and maintain old growth forest structure.

Suggested Citation

  • Young, Jesse D. & Ager, Alan A., 2024. "Resource objective wildfire leveraged to restore old growth forest structure while stabilizing carbon stocks in the southwestern United States," Ecological Modelling, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003034
    DOI: 10.1016/j.ecolmodel.2023.110573
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartsough, Bruce R. & Abrams, Scott & Barbour, R. James & Drews, Erik S. & McIver, James D. & Moghaddas, Jason J. & Schwilk, Dylan W. & Stephens, Scott L., 2008. "The economics of alternative fuel reduction treatments in western United States dry forests: Financial and policy implications from the National Fire and Fire Surrogate Study," Forest Policy and Economics, Elsevier, vol. 10(6), pages 344-354, August.
    2. Canelles, Q. & Aquilué, N. & Duane, A. & Brotons, L., 2019. "From stand to landscape: modelling post-fire regeneration and species growth," Ecological Modelling, Elsevier, vol. 404(C), pages 103-111.
    3. Sebastiaan Luyssaert & E. -Detlef Schulze & Annett Börner & Alexander Knohl & Dominik Hessenmöller & Beverly E. Law & Philippe Ciais & John Grace, 2008. "Old-growth forests as global carbon sinks," Nature, Nature, vol. 455(7210), pages 213-215, September.
    4. Ager, Alan A. & Barros, Ana M.G. & Houtman, Rachel & Seli, Rob & Day, Michelle A., 2020. "Modelling the effect of accelerated forest management on long-term wildfire activity," Ecological Modelling, Elsevier, vol. 421(C).
    5. George Busenberg, 2004. "Wildfire Management in the United States: The Evolution of a Policy Failure," Review of Policy Research, Policy Studies Organization, vol. 21(2), pages 145-156, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canadas, Maria João & Leal, Miguel & Soares, Filipa & Novais, Ana & Ribeiro, Paulo Flores & Schmidt, Luísa & Delicado, Ana & Moreira, Francisco & Bergonse, Rafaello & Oliveira, Sandra & Madeira, Paulo, 2023. "Wildfire mitigation and adaptation: Two locally independent actions supported by different policy domains," Land Use Policy, Elsevier, vol. 124(C).
    2. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    3. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    4. Spinelli, Raffaele & Magagnotti, Natascia, 2010. "A tool for productivity and cost forecasting of decentralised wood chipping," Forest Policy and Economics, Elsevier, vol. 12(3), pages 194-198, March.
    5. Bergkvist, John & Lagergren, Fredrik & Linderson, Maj-Lena Finnander & Miller, Paul & Lindeskog, Mats & Jönsson, Anna Maria, 2023. "Modelling managed forest ecosystems in Sweden: An evaluation from the stand to the regional scale," Ecological Modelling, Elsevier, vol. 477(C).
    6. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    7. repec:caa:jnljfs:v:preprint:id:118-2023-jfs is not listed on IDEAS
    8. Sutirtha Bandyopadhyay & Pranabes Dutta & Naveen Hari & Bipasha Maity, 2023. "Female Legislators and Forest Conservation in India," Working Papers 104, Ashoka University, Department of Economics.
    9. Antony S. Cheng & Lisa Dale, 2020. "Achieving Adaptive Governance of Forest Wildfire Risk Using Competitive Grants: Insights From the Colorado Wildfire Risk Reduction Grant Program," Review of Policy Research, Policy Studies Organization, vol. 37(5), pages 657-686, September.
    10. Stubenrauch, Jessica & Garske, Beatrice, 2023. "Forest protection in the EU's renewable energy directive and nature conservation legislation in light of the climate and biodiversity crisis – Identifying legal shortcomings and solutions," Forest Policy and Economics, Elsevier, vol. 153(C).
    11. Bentsen, Niclas Scott, 2017. "Carbon debt and payback time – Lost in the forest?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1211-1217.
    12. Ann Ingerson, 2011. "Carbon storage potential of harvested wood: summary and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(3), pages 307-323, March.
    13. Julia Noë & Karl-Heinz Erb & Sarah Matej & Andreas Magerl & Manan Bhan & Simone Gingrich, 2021. "Altered growth conditions more than reforestation counteracted forest biomass carbon emissions 1990–2020," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    14. Hjerpe, Evan E. & Colavito, Melanie M. & Waltz, Amy E.M. & Meador, Andrew Sánchez, 2024. "Return on investments in restoration and fuel treatments in frequent-fire forests of the American west: A meta-analysis," Ecological Economics, Elsevier, vol. 223(C).
    15. Bellassen, V. & Le Maire, G. & Dhôte, J.F. & Ciais, P. & Viovy, N., 2010. "Modelling forest management within a global vegetation model—Part 1: Model structure and general behaviour," Ecological Modelling, Elsevier, vol. 221(20), pages 2458-2474.
    16. Scheller, Robert M. & Hua, Dong & Bolstad, Paul V. & Birdsey, Richard A. & Mladenoff, David J., 2011. "The effects of forest harvest intensity in combination with wind disturbance on carbon dynamics in Lake States Mesic Forests," Ecological Modelling, Elsevier, vol. 222(1), pages 144-153.
    17. Pokharel, Raju & Latta, Gregory S., 2020. "A network analysis to identify forest merchantability limitations across the United States," Forest Policy and Economics, Elsevier, vol. 116(C).
    18. Jones, Kelly W. & Gannon, Benjamin & Timberlake, Thomas & Chamberlain, James L. & Wolk, Brett, 2022. "Societal benefits from wildfire mitigation activities through payments for watershed services: Insights from Colorado," Forest Policy and Economics, Elsevier, vol. 135(C).
    19. Wolfersberger, Julien & Amacher, Gregory S. & Delacote, Philippe & Dragicevic, Arnaud, 2022. "The dynamics of deforestation and reforestation in a developing economy," Environment and Development Economics, Cambridge University Press, vol. 27(3), pages 272-293, June.
    20. Bjart Holtsmark, 2016. "Carbon dynamics related to tree planting on new areas in Norway," Discussion Papers 848, Statistics Norway, Research Department.
    21. Ling Yao & Tang Liu & Jun Qin & Hou Jiang & Lin Yang & Pete Smith & Xi Chen & Chenghu Zhou & Shilong Piao, 2024. "Carbon sequestration potential of tree planting in China," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.