IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923003120.html
   My bibliography  Save this article

The effect of migration on vaccination dilemma in networked populations

Author

Listed:
  • Jiang, Bei
  • Yuan, Lin
  • Zou, Rongcheng
  • Su, Rui
  • Mi, Yuqiang

Abstract

As the pandemic advances and universal immunization keeps slipping worldwide, acquiring the mechanism behind this phenomenon carries the same realistic weight as pandemic control. In this paper, we look at how migration patterns affect the way people get vaccinated in the susceptible–infected–recovery (SIR) model. In particular, each node is treated as a location, thus individuals can have mobility. In more detail, people can change their locations after going through the vaccination campaign and the process of an epidemic. We discovered that, for a mobility rate below 0.2, migration behaviors accelerate the disappearance of vaccinated patches, resulting in the vaccination dilemma. That is, the movement makes vaccination levels reduce. When the migration rate surpasses 0.2, the vaccination dilemma remains unchanged. By observing the distinctive snapshots and basin entropy, the dilemma no longer changes because the snapshots and basin entropy stabilize when the movement rate exceeds a particular threshold. These findings highlight the importance of controlling migration during the pandemic.

Suggested Citation

  • Jiang, Bei & Yuan, Lin & Zou, Rongcheng & Su, Rui & Mi, Yuqiang, 2023. "The effect of migration on vaccination dilemma in networked populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003120
    DOI: 10.1016/j.chaos.2023.113411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923003120
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Shi & Ivan Romić & Yongjuan Ma & Zhen Wang & Boris Podobnik & H. Eugene Stanley & Petter Holme & Marko Jusup, 2020. "Freedom of choice adds value to public goods," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(30), pages 17516-17521, July.
    2. Ariful Kabir, K.M. & Tanimoto, Jun, 2021. "A cyclic epidemic vaccination model: Embedding the attitude of individuals toward vaccination into SVIS dynamics through social interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Du, Chunpeng & Guo, Keyu & Lu, Yikang & Jin, Haoyu & Shi, Lei, 2023. "Aspiration driven exit-option resolves social dilemmas in the network," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    4. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Li, Lan & Yuan, Lin & Jiang, Luo-Luo & Perc, Matjaž & Kurths, Jürgen, 2022. "Eliminating poverty through social mobility promotes cooperation in social dilemmas," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Yin, Lu & Lu, YiKang & Du, ChunPeng & Shi, Lei, 2022. "Effect of vaccine efficacy on disease transmission with age-structured," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. K. M. Ariful Kabir & Jun Tanimoto & Zhen Wang, 2018. "Influence of bolstering network reciprocity in the evolutionary spatial Prisoner’s Dilemma game: a perspective," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 91(12), pages 1-10, December.
    7. Lu, Yikang & Geng, Yini & Gan, Wen & Shi, Lei, 2019. "Impacts of conformist on vaccination campaign in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    8. Zou, Rongcheng & Duan, Xiaofang & Han, Zhen & Lu, Yikang & Ma, Kewei, 2023. "What information sources can prevent the epidemic: Local information or kin information?," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    10. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    11. Fukuda, Eriko & Kokubo, Satoshi & Tanimoto, Jun & Wang, Zhen & Hagishima, Aya & Ikegaya, Naoki, 2014. "Risk assessment for infectious disease and its impact on voluntary vaccination behavior in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 1-9.
    12. Zhu, Zhewen & Dong, Yuting & Lu, Yikang & Shi, Lei, 2021. "Information exchange promotes and jeopardizes cooperation on interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 569(C).
    13. Zou, R. & Deng, Z. & Lu, Y. & Hu, J. & Han, Z., 2021. "Study of spreading phenomenon in network population considering heterogeneous property," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    14. Geng, Yini & Liu, Yifan & Lu, Yikang & Shen, Chen & Shi, Lei, 2022. "Reinforcement learning explains various conditional cooperation," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Jiehui & Ma, Jie & Chen, Xiaojing, 2024. "Multi-regional collaborative mechanisms in emergency resource reserve and pre-dispatch design," International Journal of Production Economics, Elsevier, vol. 270(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    3. Wu, Bingjie & Huo, Liang'an, 2024. "The influence of different government policies on the co-evolution of information dissemination, vaccination behavior and disease transmission in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    5. Yin, Lu & Lu, YiKang & Du, ChunPeng & Shi, Lei, 2022. "Effect of vaccine efficacy on disease transmission with age-structured," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    7. Kabir, K.M. Ariful, 2021. "How evolutionary game could solve the human vaccine dilemma," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    8. Kabir, K.M. Ariful & Tanimoto, Jun, 2019. "Dynamical behaviors for vaccination can suppress infectious disease – A game theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 229-239.
    9. Liu, Yandi & Wang, Hexin & Ding, Yi & Yang, Xuan & Dai, Yu, 2022. "Can weak diversity help in propagating cooperation? Invasion of cooperators at the conformity-conflict boundary," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    10. Cui, Guang-Hai & Li, Jun-Li & Dong, Kun-Xiang & Jin, Xing & Yang, Hong-Yong & Wang, Zhen, 2024. "Influence of subsidy policies against insurances on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    11. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    12. Cui, Guang-Hai & Wang, Zhen & Li, Jun-Li & Jin, Xing & Zhang, Zhi-Wang, 2021. "Influence of precaution and dynamic post-indemnity based insurance policy on controlling the propagation of epidemic security risks in networks," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    13. Zou, Rongcheng & Duan, Xiaofang & Han, Zhen & Lu, Yikang & Ma, Kewei, 2023. "What information sources can prevent the epidemic: Local information or kin information?," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Wang, Qingqing & Du, Chunpeng & Geng, Yini & Shi, Lei, 2020. "Historical payoff can not overcome the vaccination dilemma on Barabási–Albert scale-free networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    15. Benyun Shi & Guangliang Liu & Hongjun Qiu & Yu-Wang Chen & Shaoliang Peng, 2019. "Voluntary Vaccination through Perceiving Epidemic Severity in Social Networks," Complexity, Hindawi, vol. 2019, pages 1-13, February.
    16. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    17. Okita, Kouki & Tatsukawa, Yuichi & Utsumi, Shinobu & Arefin, Md. Rajib & Hossain, Md. Anowar & Tanimoto, Jun, 2023. "Stochastic resonance effect observed in a vaccination game with effectiveness framework obeying the SIR process on a scale-free network," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    18. Huang, Jiechen & Wang, Juan & Xia, Chengyi, 2020. "Role of vaccine efficacy in the vaccination behavior under myopic update rule on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    19. Gao, Bo & Hong, Jie & Guo, Hao & Dong, Suyalatu & Lan, Zhong-Zhou, 2023. "Cooperative evolution and symmetry breaking in interdependent networks based on alliance mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    20. Wang, Jianwei & He, Jialu & Yu, Fengyuan & Guo, Yuxin & Li, Meiyu & Chen, Wei, 2020. "Realistic decision-making process with memory and adaptability in evolutionary vaccination game," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923003120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.