IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v481y2023ics0304380023000947.html
   My bibliography  Save this article

Analytical population dynamics underlying harmful algal blooms triggered by prey avoidance

Author

Listed:
  • Choi, Jang-Geun
  • Lippmann, Thomas C.
  • Harvey, Elizabeth L.

Abstract

A modified version of the NPZD ecosystem model is used to analytically examine the effects of predation avoidance, a possible mechanism for triggering harmful algal blooms (HAB). To resolve HAB development caused by predation avoidance, an additional phytoplankton functional group is considered, one that has slower nutrient uptake and better predation avoidance characteristics than the non-harmful phytoplankton group used in traditional NPZD models. Because the two phytoplankton groups (one non-harmful and one HAB) compete for only one resource within the same system, steady state (equilibrium) conditions cannot occur without the presence of zooplankton; only the non-harmful phytoplankton group, which defeats the HAB group in the resource competition, can survive in the equilibrium. The presence of sufficient zooplankton effectively acts to replenish the nutrient pool by consuming the non-harmful phytoplankton. When this occurs, two equilibrium states are found: one with both phytoplankton groups coexisting, and one that only includes the HAB group. The condition required for equilibrium is that the total nitrogen within the system should be larger than a threshold determined by model coefficients. The threshold and feasibility of the equilibrium are sensitive to the relative HAB predation avoidance coefficient. If the coefficient is larger than the ratio of net growth rates between the HAB and non-harmful phytoplankton group, the threshold becomes infinite, and an equilibrium is not feasible. The time scale for the system to reach an equilibrium state that includes a HAB group is determined asymptotically. The dependence of a threshold condition as a controlling factor may explain the regime shift of dominant species causing HABs. The ecosystem model is fully implemented into the Regional Ocean Modeling System and applied to an idealized coastal embayment (with depths and geometry taken from San Francisco Bay) to show numerically the dominance of prey avoidance dynamics in a natural shallow water environment that includes advection and diffusion. The analytical results improve strategies for HAB modeling and provide guidance for setting model coefficients necessary to resolve a HAB event.

Suggested Citation

  • Choi, Jang-Geun & Lippmann, Thomas C. & Harvey, Elizabeth L., 2023. "Analytical population dynamics underlying harmful algal blooms triggered by prey avoidance," Ecological Modelling, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s0304380023000947
    DOI: 10.1016/j.ecolmodel.2023.110366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Priester, C. Robert & Melbourne-Thomas, Jessica & Klocker, Andreas & Corney, Stuart, 2017. "Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts," Ecological Modelling, Elsevier, vol. 359(C), pages 372-382.
    2. Kishi, Michio J. & Kashiwai, Makoto & Ware, Daniel M. & Megrey, Bernard A. & Eslinger, David L. & Werner, Francisco E. & Noguchi-Aita, Maki & Azumaya, Tomonori & Fujii, Masahiko & Hashimoto, Shinji & , 2007. "NEMURO—a lower trophic level model for the North Pacific marine ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 12-25.
    3. Heinle, A. & Slawig, T., 2013. "Internal dynamics of NPZD type ecosystem models," Ecological Modelling, Elsevier, vol. 254(C), pages 33-42.
    4. Heinle, A. & Slawig, T., 2013. "Impact of parameter choice on the dynamics of NPZD type ecosystem models," Ecological Modelling, Elsevier, vol. 267(C), pages 93-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mata Almonacid, Pablo & Medel, Carolina, 2022. "A structure-preserving model for the dynamics of estuarine ecosystems and its application in western Patagonia fjords," Ecological Modelling, Elsevier, vol. 466(C).
    2. Mukai, Daiki & Kishi, Michio J. & Ito, Shin-ichi & Kurita, Yutaka, 2007. "The importance of spawning season on the growth of Pacific saury: A model-based study using NEMURO.FISH," Ecological Modelling, Elsevier, vol. 202(1), pages 165-173.
    3. Terui, Takeshi & Kishi, Michio J., 2008. "Population dynamics model of Copepoda (Neocalanus cristatus) in the northwestern subarctic Pacific," Ecological Modelling, Elsevier, vol. 215(1), pages 77-88.
    4. Brewin, Robert J.W. & Sathyendranath, Shubha & Hirata, Takafumi & Lavender, Samantha J. & Barciela, Rosa M. & Hardman-Mountford, Nick J., 2010. "A three-component model of phytoplankton size class for the Atlantic Ocean," Ecological Modelling, Elsevier, vol. 221(11), pages 1472-1483.
    5. Fujii, Masahiko & Yamanaka, Yasuhiro & Nojiri, Yukihiro & Kishi, Michio J. & Chai, Fei, 2007. "Comparison of seasonal characteristics in biogeochemistry among the subarctic North Pacific stations described with a NEMURO-based marine ecosystem model," Ecological Modelling, Elsevier, vol. 202(1), pages 52-67.
    6. Kumar, Vijay & Kumari, Beena, 2015. "Mathematical modelling of the seasonal variability of plankton and forage fish in the Gulf of Kachchh," Ecological Modelling, Elsevier, vol. 313(C), pages 237-250.
    7. Xing, Lei & Zhang, Chongliang & Chen, Yong & Shin, Yunne-Jai & Verley, Philippe & Yu, Haiqing & Ren, Yiping, 2017. "An individual-based model for simulating the ecosystem dynamics of Jiaozhou Bay, China," Ecological Modelling, Elsevier, vol. 360(C), pages 120-131.
    8. Yoshie, Naoki & Yamanaka, Yasuhiro & Rose, Kenneth A. & Eslinger, David L. & Ware, Daniel M. & Kishi, Michio J., 2007. "Parameter sensitivity study of the NEMURO lower trophic level marine ecosystem model," Ecological Modelling, Elsevier, vol. 202(1), pages 26-37.
    9. Kearney, Kelly A. & Stock, Charles & Aydin, Kerim & Sarmiento, Jorge L., 2012. "Coupling planktonic ecosystem and fisheries food web models for a pelagic ecosystem: Description and validation for the subarctic Pacific," Ecological Modelling, Elsevier, vol. 237, pages 43-62.
    10. Fiechter, Jerome, 2012. "Assessing marine ecosystem model properties from ensemble calculations," Ecological Modelling, Elsevier, vol. 242(C), pages 164-179.
    11. Masuda, Yoshio & Yamanaka, Yasuhiro & Hirata, Takafumi & Nakano, Hideyuki & Kohyama, Takashi S., 2020. "Inhibition of competitive exclusion due to phytoplankton dispersion: a contribution for solving Hutchinson's paradox," Ecological Modelling, Elsevier, vol. 430(C).
    12. Priyadarshi, Anupam & Chandra, Ram & Kishi, Michio J. & Smith, S.Lan & Yamazaki, Hidekatsu, 2022. "Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels," Ecological Modelling, Elsevier, vol. 467(C).
    13. Zuenko, Yury I., 2007. "Application of a lower trophic level model to a coastal sea ecosystem," Ecological Modelling, Elsevier, vol. 202(1), pages 132-143.
    14. Batchelder, Harold P. & Kashiwai, Makoto, 2007. "Ecosystem modeling with NEMURO within the PICES Climate Change and Carrying Capacity program," Ecological Modelling, Elsevier, vol. 202(1), pages 7-11.
    15. Morales, Mark M. & Fiechter, Jerome & Field, John C. & Kashef, Neosha S & Hazen, Elliott L. & Carr, Mark H., 2024. "Development and application of a bioenergetics growth model for multiple early life stages of an ecologically important marine fish," Ecological Modelling, Elsevier, vol. 488(C).
    16. Kakehi, Shigeho & Abo, Jun-ichi & Miyamoto, Hiroomi & Fuji, Taiki & Watanabe, Kazuyoshi & Yamashita, Hideyuki & Suyama, Satoshi, 2020. "Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model," Ecological Modelling, Elsevier, vol. 431(C).
    17. Heinle, A. & Slawig, T., 2013. "Impact of parameter choice on the dynamics of NPZD type ecosystem models," Ecological Modelling, Elsevier, vol. 267(C), pages 93-101.
    18. Rose, Kenneth A. & Werner, Francisco E. & Megrey, Bernard A. & Aita, Maki Noguchi & Yamanaka, Yasuhiro & Hay, Douglas E. & Schweigert, Jake F. & Foster, Matthew Birch, 2007. "Simulated herring growth responses in the Northeastern Pacific to historic temperature and zooplankton conditions generated by the 3-dimensional NEMURO nutrient–phytoplankton–zooplankton model," Ecological Modelling, Elsevier, vol. 202(1), pages 184-195.
    19. Sailley, S.F. & Vogt, M. & Doney, S.C. & Aita, M.N. & Bopp, L. & Buitenhuis, E.T. & Hashioka, T. & Lima, I. & Le Quéré, C. & Yamanaka, Y., 2013. "Comparing food web structures and dynamics across a suite of global marine ecosystem models," Ecological Modelling, Elsevier, vol. 261, pages 43-57.
    20. Hashioka, Taketo & Yamanaka, Yasuhiro, 2007. "Ecosystem change in the western North Pacific associated with global warming using 3D-NEMURO," Ecological Modelling, Elsevier, vol. 202(1), pages 95-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s0304380023000947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.