IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v359y2017icp372-382.html
   My bibliography  Save this article

Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts

Author

Listed:
  • Priester, C. Robert
  • Melbourne-Thomas, Jessica
  • Klocker, Andreas
  • Corney, Stuart

Abstract

The Southern Ocean is the largest high nutrient, low chlorophyll region in the global ocean and is subject to strong iron limitation. Iron availability is associated with the interaction between the Antarctic Circumpolar Current (ACC) and topographic features such as the Kerguelen Plateau in the Indian Sector of the Southern Ocean. The fronts of the ACC also provide important environmental delineations for Southern Ocean ecosystem structure. Here, we implement a NPZD (nitrogen, phytoplankton, zooplankton, detritus) model together with an optimal control algorithm along three meridional transects across the Antarctic Circumpolar Current. Our study represents the first spatial application of this model, and considers potential environmental drivers of parameter variability and community dynamics.

Suggested Citation

  • Priester, C. Robert & Melbourne-Thomas, Jessica & Klocker, Andreas & Corney, Stuart, 2017. "Abrupt transitions in dynamics of a NPZD model across Southern Ocean fronts," Ecological Modelling, Elsevier, vol. 359(C), pages 372-382.
  • Handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:372-382
    DOI: 10.1016/j.ecolmodel.2017.05.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.05.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y.H. Dai & Y. Yuan, 2001. "An Efficient Hybrid Conjugate Gradient Method for Unconstrained Optimization," Annals of Operations Research, Springer, vol. 103(1), pages 33-47, March.
    2. William G. Sunda & Susan A. Huntsman, 1997. "Interrelated influence of iron, light and cell size on marine phytoplankton growth," Nature, Nature, vol. 390(6658), pages 389-392, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Choi, Jang-Geun & Lippmann, Thomas C. & Harvey, Elizabeth L., 2023. "Analytical population dynamics underlying harmful algal blooms triggered by prey avoidance," Ecological Modelling, Elsevier, vol. 481(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Tovbis & Vladimir Krutikov & Predrag Stanimirović & Vladimir Meshechkin & Aleksey Popov & Lev Kazakovtsev, 2023. "A Family of Multi-Step Subgradient Minimization Methods," Mathematics, MDPI, vol. 11(10), pages 1-24, May.
    2. Hiroyuki Sakai & Hideaki Iiduka, 2020. "Hybrid Riemannian conjugate gradient methods with global convergence properties," Computational Optimization and Applications, Springer, vol. 77(3), pages 811-830, December.
    3. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2012. "Economic prospects of ocean iron fertilization in an international carbon market," Resource and Energy Economics, Elsevier, vol. 34(1), pages 129-150.
    4. Serge Gratton & Vincent Malmedy & Philippe Toint, 2012. "Using approximate secant equations in limited memory methods for multilevel unconstrained optimization," Computational Optimization and Applications, Springer, vol. 51(3), pages 967-979, April.
    5. Kin Keung Lai & Shashi Kant Mishra & Bhagwat Ram & Ravina Sharma, 2023. "A Conjugate Gradient Method: Quantum Spectral Polak–Ribiére–Polyak Approach for Unconstrained Optimization Problems," Mathematics, MDPI, vol. 11(23), pages 1-14, December.
    6. Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Salem Mahdi & Ali Wagdy Mohamed, 2022. "A Hybrid Stochastic Deterministic Algorithm for Solving Unconstrained Optimization Problems," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Yaqin Zhang & Chang Liu & Yuxia Li & Liuting Song & Jie Yang & Rui Zuo & Jian Li & Yanguo Teng & Jinsheng Wang, 2022. "Spectroscopic Characteristics and Speciation Distribution of Fe(III) Binding to Molecular Weight-Dependent Standard Pahokee Peat Fulvic Acid," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    8. Dragone, Giuliano & Fernandes, Bruno D. & Abreu, Ana P. & Vicente, António A. & Teixeira, José A., 2011. "Nutrient limitation as a strategy for increasing starch accumulation in microalgae," Applied Energy, Elsevier, vol. 88(10), pages 3331-3335.
    9. B. Sellami & Y. Chaib, 2016. "A new family of globally convergent conjugate gradient methods," Annals of Operations Research, Springer, vol. 241(1), pages 497-513, June.
    10. Ratnarajah, Lavenia & Melbourne-Thomas, Jessica & Marzloff, Martin P. & Lannuzel, Delphine & Meiners, Klaus M. & Chever, Fanny & Nicol, Stephen & Bowie, Andrew R., 2016. "A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: Sensitivity of primary productivity estimates to parameter uncertainty," Ecological Modelling, Elsevier, vol. 320(C), pages 203-212.
    11. Neculai Andrei, 2013. "Another Conjugate Gradient Algorithm with Guaranteed Descent and Conjugacy Conditions for Large-scale Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 159-182, October.
    12. N. Andrei, 2009. "Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 249-264, May.
    13. Rickels, Wilfried & Rehdanz, Katrin & Oschlies, Andreas, 2010. "Methods for greenhouse gas offset accounting: A case study of ocean iron fertilization," Ecological Economics, Elsevier, vol. 69(12), pages 2495-2509, October.
    14. Hiroyuki Sakai & Hideaki Iiduka, 2021. "Sufficient Descent Riemannian Conjugate Gradient Methods," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 130-150, July.
    15. Jose Giovany Babativa-Márquez & José Luis Vicente-Villardón, 2021. "Logistic Biplot by Conjugate Gradient Algorithms and Iterated SVD," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    16. Shuai Wang & Xiaoliang Wang & Yuzhu Tian & Liping Pang, 2024. "A New Hybrid Descent Algorithm for Large-Scale Nonconvex Optimization and Application to Some Image Restoration Problems," Mathematics, MDPI, vol. 12(19), pages 1-16, October.
    17. Nash, John C. & Varadhan, Ravi, 2011. "Unifying Optimization Algorithms to Aid Software System Users: optimx for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i09).
    18. Jinbao Jian & Lin Yang & Xianzhen Jiang & Pengjie Liu & Meixing Liu, 2020. "A Spectral Conjugate Gradient Method with Descent Property," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    19. C. X. Kou & Y. H. Dai, 2015. "A Modified Self-Scaling Memoryless Broyden–Fletcher–Goldfarb–Shanno Method for Unconstrained Optimization," Journal of Optimization Theory and Applications, Springer, vol. 165(1), pages 209-224, April.
    20. Andrei, Neculai, 2010. "Accelerated scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization," European Journal of Operational Research, Elsevier, vol. 204(3), pages 410-420, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:359:y:2017:i:c:p:372-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.