IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v481y2023ics030438002300087x.html
   My bibliography  Save this article

Spatial inconsistency of memorized positions produces different types of movements

Author

Listed:
  • Sakiyama, Tomoko

Abstract

Animals are known to use information such as spatial memory in order to search for or relocate their goals. Some animals show self-avoiding walks to present straight movements. Interesting, animals alter their migratory and diffusive behaviors in response to their own experiences or independently in a similar environment. To tackle this problem by focusing on the decision-making of the random walker, we developed an artificial agent-based model in which the agent considers the time series of its memorized locations. In our proposed model, the agent sometimes regards part of its memorized cells as past information and changes its directional rule in order to not to revisit those locations. Experimental results demonstrated that the agent succeeded in producing both super-diffusive walks and sub-diffusive walks. Importantly, these various characteristic movements emerge without any adjustments of parameters.

Suggested Citation

  • Sakiyama, Tomoko, 2023. "Spatial inconsistency of memorized positions produces different types of movements," Ecological Modelling, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s030438002300087x
    DOI: 10.1016/j.ecolmodel.2023.110359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002300087X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    2. Pascual López-López & José Benavent-Corai & Clara García-Ripollés & Vicente Urios, 2013. "Scavengers on the Move: Behavioural Changes in Foraging Search Patterns during the Annual Cycle," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
    3. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    4. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    5. Frederic Bartumeus & Ernesto P Raposo & Gandhimohan M Viswanathan & Marcos G E da Luz, 2014. "Stochastic Optimal Foraging: Tuning Intensive and Extensive Dynamics in Random Searches," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    3. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    4. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    5. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    6. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    7. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    8. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    9. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    10. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    11. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    12. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    13. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    14. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    15. Sorel, Maeva & Gay, Pierre-Emmanuel & Vernier, Camille & Cissé, Sory & Piou, Cyril, 2024. "Upwind flight partially explains the migratory routes of locust swarms," Ecological Modelling, Elsevier, vol. 489(C).
    16. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    17. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).
    18. Thompson, Noelle E & Butts, David J & Murillo, Michael S & O'Brien, Daniel J & Christensen, Sonja A & Porter, William F & Roloff, Gary J, 2024. "An individual-based model for direct and indirect transmission of chronic wasting disease in free-ranging white-tailed deer," Ecological Modelling, Elsevier, vol. 491(C).
    19. Diaz, Stephanie G. & DeAngelis, Donald L. & Gaines, Michael S. & Purdon, Andrew & Mole, Michael A. & van Aarde, Rudi J., 2021. "Development and validation of a spatially-explicit agent-based model for space utilization by African savanna elephants (Loxodonta africana) based on determinants of movement," Ecological Modelling, Elsevier, vol. 447(C).
    20. Chudzinska, Magda & Nabe-Nielsen, Jacob & Smout, Sophie & Aarts, Geert & Brasseur, Sophie & Graham, Isla & Thompson, Paul & McConnell, Bernie, 2021. "AgentSeal: Agent-based model describing movement of marine central-place foragers," Ecological Modelling, Elsevier, vol. 440(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s030438002300087x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.