IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v466y2022ics0304380022000126.html
   My bibliography  Save this article

Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters

Author

Listed:
  • Medeiros-Sousa, Antônio Ralph
  • Laporta, Gabriel Zorello
  • Mucci, Luis Filipe
  • Marrelli, Mauro Toledo

Abstract

Yellow fever (YF) is an acute infectious hemorrhagic disease caused by the yellow fever virus (YFV) and transmitted to humans by infected mosquitoes. In Brazil and other South American countries, the disease has been restricted to the sylvatic cycle, in which the virus circulates among mosquitoes and non-human primates in forested areas. Frequent outbreaks in the Amazon basin that spread to other Brazilian ecoregions have been observed in recent years. The most recent started in 2014 and spread to forests in densely populated areas on the Brazilian Atlantic Coast, resulting in the death of hundreds of humans and thousands of monkeys. However, the underlying ecological mechanisms that support YFV amplification and the severity of an epizootic and persistence of the virus on a microgeographic scale in these forest patches are still poorly understood. Here, we developed an agent-based model that simulates the dynamics of YFV transmission in a hypothetical forest fragment. The proposed model contains individual agents representing mosquitoes, breeding sites, howler monkeys (Alouatta) and other vertebrate species living and interacting in an environment where the YFV has emerged. The model simulations aimed to investigate the isolated and interaction effects of important input parameters linked to mosquitoes, monkeys, the environment and hypothetical alternative hosts on the following outcomes: (1) maximum proportion of infected mosquitoes, (2) proportion of dead monkeys and (3) YFV persistence in the environment. Local and global sensitivity analyses were used to assess the influence of different sets of input parameter values on the outputs. The model simulations indicated that mosquito abundance had the greatest influence on the outputs and made a major contribution to monkey mortality. Additionally, most of the variation in the outputs was due to complex and indirect effects of the different input parameters. These results suggest that mosquito density is one of the main factors responsible for YFV amplification during epizootics and reinforce the hypothesis that the severity and persistence of an outbreak depend on a complex web of interactions between different factors associated with vectors, hosts and the environment.

Suggested Citation

  • Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).
  • Handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380022000126
    DOI: 10.1016/j.ecolmodel.2022.109884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Volker Grimm & Steven F. Railsback & Christian E. Vincenot & Uta Berger & Cara Gallagher & Donald L. DeAngelis & Bruce Edmonds & Jiaqi Ge & Jarl Giske & Jürgen Groeneveld & Alice S.A. Johnston & Alex, 2020. "The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 23(2), pages 1-7.
    2. Felicia Keesing & Lisa K. Belden & Peter Daszak & Andrew Dobson & C. Drew Harvell & Robert D. Holt & Peter Hudson & Anna Jolles & Kate E. Jones & Charles E. Mitchell & Samuel S. Myers & Tiffany Bogich, 2010. "Impacts of biodiversity on the emergence and transmission of infectious diseases," Nature, Nature, vol. 468(7324), pages 647-652, December.
    3. Jan C. Thiele & Winfried Kurth & Volker Grimm, 2014. "Facilitating Parameter Estimation and Sensitivity Analysis of Agent-Based Models: A Cookbook Using NetLogo and 'R'," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(3), pages 1-11.
    4. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    5. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    2. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    3. Lapp, Maya & Long, Colby, 2022. "A new approach to agent-based models of Community Resource Management based on the analysis of cheating, monitoring, and sanctioning," Ecological Modelling, Elsevier, vol. 468(C).
    4. Planque, Benjamin & Aarflot, Johanna M. & Buttay, Lucie & Carroll, JoLynn & Fransner, Filippa & Hansen, Cecilie & Husson, Bérengère & Langangen, Øystein & Lindstrøm, Ulf & Pedersen, Torstein & Primice, 2022. "A standard protocol for describing the evaluation of ecological models," Ecological Modelling, Elsevier, vol. 471(C).
    5. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    6. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    7. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    8. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    9. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    10. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    11. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    12. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    13. Kjær, Lene J. & Schauber, Eric M., 2022. "The effect of landscape, transmission mode and social behavior on disease transmission: Simulating the transmission of chronic wasting disease in white-tailed deer (Odocoileus virginianus) populations," Ecological Modelling, Elsevier, vol. 472(C).
    14. Noeldeke, Beatrice & Winter, Etti & Ntawuhiganayo, Elisée Bahati, 2022. "Representing human decision-making in agent-based simulation models: Agroforestry adoption in rural Rwanda," Ecological Economics, Elsevier, vol. 200(C).
    15. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    16. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    17. Thurner, Stephanie D & Converse, Sarah J & Branch, Trevor A, 2021. "Modeling opportunistic exploitation: increased extinction risk when targeting more than one species," Ecological Modelling, Elsevier, vol. 454(C).
    18. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    19. Sorel, Maeva & Gay, Pierre-Emmanuel & Vernier, Camille & Cissé, Sory & Piou, Cyril, 2024. "Upwind flight partially explains the migratory routes of locust swarms," Ecological Modelling, Elsevier, vol. 489(C).
    20. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:466:y:2022:i:c:s0304380022000126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.