IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v208y2007i2p230-246.html
   My bibliography  Save this article

Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum

Author

Listed:
  • Arhonditsis, George B.
  • Stow, Craig A.
  • Paerl, Hans W.
  • Valdes-Weaver, Lexia M.
  • Steinberg, Laura J.
  • Reckhow, Kenneth H.

Abstract

We examined the spatiotemporal phytoplankton community patterns and identified the nature of the underlying causal mechanisms in a freshwater–saltwater continuum, the Neuse River Estuary (North Carolina, USA). We used a Bayesian structural equation modeling (SEM) approach that considers the regulatory role of the physical environment (flow, salinity, and light availability), nitrogen (dissolved oxidized inorganic nitrogen and total dissolved inorganic nitrogen), phosphorus, and temperature on total phytoplankton biomass and phytoplankton community composition. Hydrologic forcing (mainly the river flow fluctuations) dominates the up-estuary processes and loosens the coupling between nutrients and phytoplankton. The switch from an upstream negative to a downstream positive phytoplankton–physical environment relationship suggests that the elevated advective transport from the upper reaches of the estuary leads to a phytoplankton biomass accumulation in the mid- and down-estuary segments. The positive influence of the physical environment on the phytoplankton community response was more evident on diatom, chlorophyte and cryptophyte dynamics, which also highlights the opportunistic behavior of these taxa (faster nutrient uptake and growth rates, tolerance on low salinity conditions) that allows them to dominate the phytoplankton community during high freshwater conditions. Model results highlight the stronger association between phosphorus and total phytoplankton dynamics at the upstream freshwater locations; both nitrogen and phosphorus played a significant role in the middle section of the estuary, while the nitrogen–phytoplankton relationship was stronger in the downstream meso-polyhaline zone. Finally, our analysis provided evidence of a protracted favorable environment (e.g., longer residence times, low DIN concentrations and relaxation of the phosphorus limitation) for cyanobacteria dominance as we move to the down-estuary area, resulting in structural shifts on the phytoplankton community temporal patterns.

Suggested Citation

  • Arhonditsis, George B. & Stow, Craig A. & Paerl, Hans W. & Valdes-Weaver, Lexia M. & Steinberg, Laura J. & Reckhow, Kenneth H., 2007. "Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum," Ecological Modelling, Elsevier, vol. 208(2), pages 230-246.
  • Handle: RePEc:eee:ecomod:v:208:y:2007:i:2:p:230-246
    DOI: 10.1016/j.ecolmodel.2007.06.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438000700316X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.06.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio A. Sañudo-Wilhelmy & Antonio Tovar-Sanchez & Fei-Xue Fu & Douglas G. Capone & Edward J. Carpenter & David A. Hutchins, 2004. "The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry," Nature, Nature, vol. 432(7019), pages 897-901, December.
    2. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(2), pages 427-429, April.
    3. ,, 2004. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 20(1), pages 223-229, February.
    4. Christopher A. Klausmeier & Elena Litchman & Tanguy Daufresne & Simon A. Levin, 2004. "Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton," Nature, Nature, vol. 429(6988), pages 171-174, May.
    5. Richard Scheines & Herbert Hoijtink & Anne Boomsma, 1999. "Bayesian estimation and testing of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 64(1), pages 37-52, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deutsch, Eliza S. & Alameddine, Ibrahim & Qian, Song S., 2020. "Using structural equation modeling to better understand microcystis biovolume dynamics in a mediterranean hypereutrophic reservoir," Ecological Modelling, Elsevier, vol. 435(C).
    2. Lopes, José Fortes & Almeida, M.A. & Cunha, M.A., 2010. "Modelling the ecological patterns of a temperate lagoon in a very wet spring season," Ecological Modelling, Elsevier, vol. 221(19), pages 2302-2322.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kurdyś-Kujawska & Agnieszka Sompolska-Rzechuła & Joanna Pawłowska-Tyszko & Michał Soliwoda, 2021. "Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding," Agriculture, MDPI, vol. 11(11), pages 1-17, November.
    2. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    3. Nick Middleton & Utchang Kang, 2017. "Sand and Dust Storms: Impact Mitigation," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    4. Tarantino, Emanuele & Pavanini, Nicola & Mayordomo, Sergio, 2020. "The Impact of Alternative Forms of Bank Consolidation on Credit Supply and Financial Stability," CEPR Discussion Papers 15069, C.E.P.R. Discussion Papers.
    5. Misbah Haque & Imran Ali, 2016. "Uncertain Environment and Organizational Performance: The Mediating Role of Organizational Innovation," Asian Social Science, Canadian Center of Science and Education, vol. 12(9), pages 124-124, September.
    6. Jérôme Creel & Éloi Laurent & Jacques Le Cacheux, 2007. "Politiques et performances macroéconomiques de la zone euro. Institutions, incitations, stratégies," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 249-281.
    7. , & ,, 2015. "Strategy-proofness and efficiency with non-quasi-linear preferences: a characterization of minimum price Walrasian rule," Theoretical Economics, Econometric Society, vol. 10(2), May.
    8. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    9. Nobuyoshi Yamori & Ayami Kobayashi, 2007. "Wealth Effect Of Public Fund Injections To Ailing Banks: Do Deferred Tax Assets And Auditing Firms Matter?," The Japanese Economic Review, Japanese Economic Association, vol. 58(4), pages 466-483, December.
    10. Vladimir Krivtsov & Brian J. D’Arcy & Alejandro Escribano Sevilla & Scott Arthur & Chris Semple, 2021. "Mitigating Polluted Runoff from Industrial Estates by SUDS Retrofits: Case Studies of Problems and Solutions Co-Designed with a Participatory Approach," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Werner, Katharina & Graf Lambsdorff, Johann, 2016. "Emotional numbing and lessons learned after a violent conflict - Experimental evidence from Ambon, Indonesia," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-74-16, University of Passau, Faculty of Business and Economics.
    12. Wong, Patricia J.Y., 2015. "Eigenvalues of a general class of boundary value problem with derivative-dependent nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 908-930.
    13. Alexandre Belloni & Mitchell J. Lovett & William Boulding & Richard Staelin, 2012. "Optimal Admission and Scholarship Decisions: Choosing Customized Marketing Offers to Attract a Desirable Mix of Customers," Marketing Science, INFORMS, vol. 31(4), pages 621-636, July.
    14. Janine A. Wright & Richard J. Barker & Matthew R. Schofield & Alain C. Frantz & Andrea E. Byrom & Dianne M. Gleeson, 2009. "Incorporating Genotype Uncertainty into Mark–Recapture-Type Models For Estimating Abundance Using DNA Samples," Biometrics, The International Biometric Society, vol. 65(3), pages 833-840, September.
    15. Ghosal, Sayantan & Thampanishvong, Kannika, 2013. "Does strengthening Collective Action Clauses (CACs) help?," Journal of International Economics, Elsevier, vol. 89(1), pages 68-78.
    16. Radoslav Škapa, 2014. "Formalized Planning and Its Connection With the Development of Reverse Logistics: the Case of Services," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 62(4), pages 749-755.
    17. Rozakis, Stelios, 2011. "Impacts of flatter rates and environmental top-ups in Greece: A novel mathematical modeling approach," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 12(2).
    18. Ying-Jie Li & Dong-Hui Li, 2009. "Truncated regularized Newton method for convex minimizations," Computational Optimization and Applications, Springer, vol. 43(1), pages 119-131, May.
    19. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    20. Jörg Fliege & Huifu Xu, 2011. "Stochastic Multiobjective Optimization: Sample Average Approximation and Applications," Journal of Optimization Theory and Applications, Springer, vol. 151(1), pages 135-162, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:208:y:2007:i:2:p:230-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.