IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v252y2013icp196-213.html
   My bibliography  Save this article

An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment

Author

Listed:
  • Li, Yu
  • Waite, Anya M.
  • Gal, Gideon
  • Hipsey, Matthew R.

Abstract

The N:P stoichiometry of a water body is one of the most commonly used indicators of its nutrient status and algal growth. However, in a dynamic aquatic ecosystem the N:P stoichiometry of phytoplankton is highly variable and depends on environmental conditions and key microbial interactions that influence their growth, such as grazing pressures and the microbial loop. Here we determine the influence of the nutrient-dependent microbial interactions between zooplankton, phytoplankton and bacteria on the ecological stoichiometry at different trophic levels and how they relate to water column properties. A 1D hydrodynamic–ecological model (DYRESM–CAEDYM) was applied to Lake Kinneret (Israel) for examining how the internal nutrient ratios of several phytoplankton functional groups correlate with nutrient ratios within the water column, and further explore how the microbial loop shapes the patterns of stoichiometry within the food web by testing two microbial loop configurations. The results showed that the average internal N:P ratios of the phytoplankton community followed their total carbon biomass patterns, and that seasonal patterns of simulated dissolved inorganic N to total P (DIN:TP) ratios in the water column were a useful indicator for reflecting the bulk phytoplankton N:P stoichiometry as compared with total N to total P (TN:TP) ratios and dissolved inorganic N to dissolved inorganic P (DIN:DIP) ratios. However, the internal N:P ratio patterns of individual phytoplankton groups did not necessarily correlate with DIN:TP ratio patterns in the water column. This was because different microbial processes regulate nutrient flows to individual phytoplankton groups. Our simulations with the microbial loop highlight the ability of bacteria to regulate phytoplankton stoichiometry. These results provide an improved mechanistic understanding of the food web in aquatic ecosystems.

Suggested Citation

  • Li, Yu & Waite, Anya M. & Gal, Gideon & Hipsey, Matthew R., 2013. "An analysis of the relationship between phytoplankton internal stoichiometry and water column N:P ratios in a dynamic lake environment," Ecological Modelling, Elsevier, vol. 252(C), pages 196-213.
  • Handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:196-213
    DOI: 10.1016/j.ecolmodel.2012.06.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012003006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.06.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergio A. Sañudo-Wilhelmy & Antonio Tovar-Sanchez & Fei-Xue Fu & Douglas G. Capone & Edward J. Carpenter & David A. Hutchins, 2004. "The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry," Nature, Nature, vol. 432(7019), pages 897-901, December.
    2. Hillmer, Ingrid & van Reenen, Penelope & Imberger, Jörg & Zohary, Tamar, 2008. "Phytoplankton patchiness and their role in the modelled productivity of a large, seasonally stratified lake," Ecological Modelling, Elsevier, vol. 218(1), pages 49-59.
    3. Christopher A. Klausmeier & Elena Litchman & Tanguy Daufresne & Simon A. Levin, 2004. "Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton," Nature, Nature, vol. 429(6988), pages 171-174, May.
    4. Gal, G. & Hipsey, M.R. & Parparov, A. & Wagner, U. & Makler, V. & Zohary, T., 2009. "Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study," Ecological Modelling, Elsevier, vol. 220(13), pages 1697-1718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Zhongyao & Wu, Sifeng & Chen, Huili & Yu, Yanhong & Liu, Yong, 2018. "A probabilistic method to enhance understanding of nutrient limitation dynamics of phytoplankton," Ecological Modelling, Elsevier, vol. 368(C), pages 404-410.
    2. Fenocchi, Andrea & Rogora, Michela & Morabito, Giuseppe & Marchetto, Aldo & Sibilla, Stefano & Dresti, Claudia, 2019. "Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland)," Ecological Modelling, Elsevier, vol. 392(C), pages 38-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arhonditsis, George B. & Stow, Craig A. & Paerl, Hans W. & Valdes-Weaver, Lexia M. & Steinberg, Laura J. & Reckhow, Kenneth H., 2007. "Delineation of the role of nutrient dynamics and hydrologic forcing on phytoplankton patterns along a freshwater–marine continuum," Ecological Modelling, Elsevier, vol. 208(2), pages 230-246.
    2. Fenocchi, Andrea & Rogora, Michela & Morabito, Giuseppe & Marchetto, Aldo & Sibilla, Stefano & Dresti, Claudia, 2019. "Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland)," Ecological Modelling, Elsevier, vol. 392(C), pages 38-51.
    3. Shen, Anglu & Gao, Shufei & Heggerud, Christopher M. & Wang, Hao & Ma, Zengling & Yuan, Sanling, 2023. "Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory," Ecological Modelling, Elsevier, vol. 479(C).
    4. Zhang, Xiaoqing & Recknagel, Friedrich & Chen, Qiuwen & Cao, Hongqing & Li, Ruonan, 2015. "Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation," Ecological Modelling, Elsevier, vol. 306(C), pages 216-225.
    5. Wan, Zhenwen & Bi, Hongsheng, 2014. "Comparing model scenarios of variable plankton N/P ratio versus the constant one for the application in the Baltic Sea," Ecological Modelling, Elsevier, vol. 272(C), pages 28-39.
    6. Clark, James R. & Daines, Stuart J. & Lenton, Timothy M. & Watson, Andrew J. & Williams, Hywel T.P., 2011. "Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters," Ecological Modelling, Elsevier, vol. 222(23), pages 3823-3837.
    7. Weinberger, Stefan & Vetter, Mark, 2012. "Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee," Ecological Modelling, Elsevier, vol. 244(C), pages 38-48.
    8. Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
    9. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    10. Jiancai Deng & Fang Chen & Weiping Hu & Xin Lu & Bin Xu & David P. Hamilton, 2019. "Variations in the Distribution of Chl- a and Simulation Using a Multiple Regression Model," IJERPH, MDPI, vol. 16(22), pages 1-16, November.
    11. Kerimoglu, Onur & Jacquet, Stéphan & Vinçon-Leite, Brigitte & Lemaire, Bruno J. & Rimet, Frédéric & Soulignac, Frédéric & Trévisan, Dominique & Anneville, Orlane, 2017. "Modelling the plankton groups of the deep, peri-alpine Lake Bourget," Ecological Modelling, Elsevier, vol. 359(C), pages 415-433.
    12. Gao, Shufei & Shen, Anglu & Jiang, Jie & Wang, Hao & Yuan, Sanling, 2022. "Kinetics of phosphate uptake in the dinoflagellate Karenia mikimotoi in response to phosphate stress and temperature," Ecological Modelling, Elsevier, vol. 468(C).
    13. Han, Yue & Zhou, Yuntao, 2022. "Investigating biophysical control of marine phytoplankton dynamics via Bayesian mechanistic modeling," Ecological Modelling, Elsevier, vol. 474(C).
    14. Chung, S.W. & Imberger, J. & Hipsey, M.R. & Lee, H.S., 2014. "The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir," Ecological Modelling, Elsevier, vol. 289(C), pages 133-149.
    15. Gilboa, Yael & Friedler, Eran & Gal, Gideon, 2009. "Adapting empirical equations to Lake Kinneret data by using three calibration methods," Ecological Modelling, Elsevier, vol. 220(23), pages 3291-3300.
    16. Daniel Graeber & Mark J. McCarthy & Tom Shatwell & Dietrich Borchardt & Erik Jeppesen & Martin Søndergaard & Torben L. Lauridsen & Thomas A. Davidson, 2024. "Consistent stoichiometric long-term relationships between nutrients and chlorophyll-a across shallow lakes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Farrell, Kaitlin J. & Ward, Nicole K. & Krinos, Arianna I. & Hanson, Paul C. & Daneshmand, Vahid & Figueiredo, Renato J. & Carey, Cayelan C., 2020. "Ecosystem-scale nutrient cycling responses to increasing air temperatures vary with lake trophic state," Ecological Modelling, Elsevier, vol. 430(C).
    18. Tsakalakis, Ioannis & Pahlow, Markus & Oschlies, Andreas & Blasius, Bernd & Ryabov, Alexey B., 2018. "Diel light cycle as a key factor for modelling phytoplankton biogeography and diversity," Ecological Modelling, Elsevier, vol. 384(C), pages 241-248.
    19. Flynn, Kyle F. & Chapra, Steven C. & Suplee, Michael W., 2013. "Modeling the lateral variation of bottom-attached algae in rivers," Ecological Modelling, Elsevier, vol. 267(C), pages 11-25.
    20. Tarun De & Minati De & Subhajit Das & Chumki Chowdhury & Raghab Ray & Tapan Jana, 2011. "Phytoplankton abundance in relation to cultural eutrophication at the land-ocean boundary of Sunderbans, NE Coast of Bay of Bengal, India," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 1(3), pages 169-180, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:196-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.