IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0005568.html
   My bibliography  Save this article

Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models

Author

Listed:
  • Erin A Mordecai
  • Jeremy M Cohen
  • Michelle V Evans
  • Prithvi Gudapati
  • Leah R Johnson
  • Catherine A Lippi
  • Kerri Miazgowicz
  • Courtney C Murdock
  • Jason R Rohr
  • Sadie J Ryan
  • Van Savage
  • Marta S Shocket
  • Anna Stewart Ibarra
  • Matthew B Thomas
  • Daniel P Weikel

Abstract

Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18–34°C with maximal transmission occurring in a range from 26–29°C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.Author summary: Understanding the drivers of recent Zika, dengue, and chikungunya epidemics is a major public health priority. Temperature may play an important role because it affects virus transmission by mosquitoes, through its effects on mosquito development, survival, reproduction, and biting rates as well as the rate at which mosquitoes acquire and transmit viruses. Here, we measure the impact of temperature on transmission by two of the most common mosquito vector species for these viruses, Aedes aegypti and Ae. albopictus. We integrate data from several laboratory experiments into a mathematical model of temperature-dependent transmission, and find that transmission peaks at 26–29°C and can occur between 18–34°C. Statistically comparing model predictions with recent observed human cases of dengue, chikungunya, and Zika across the Americas suggests an important role for temperature, and supports model predictions. Using the model, we predict that most of the tropics and subtropics are suitable for transmission in many or all months of the year, but that temperate areas like most of the United States are only suitable for transmission for a few months during the summer (even if the mosquito vector is present).

Suggested Citation

  • Erin A Mordecai & Jeremy M Cohen & Michelle V Evans & Prithvi Gudapati & Leah R Johnson & Catherine A Lippi & Kerri Miazgowicz & Courtney C Murdock & Jason R Rohr & Sadie J Ryan & Van Savage & Marta S, 2017. "Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(4), pages 1-18, April.
  • Handle: RePEc:plo:pntd00:0005568
    DOI: 10.1371/journal.pntd.0005568
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005568
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0005568&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0005568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cory W Morin & Andrew J Monaghan & Mary H Hayden & Roberto Barrera & Kacey Ernst, 2015. "Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(8), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Drif & Benjamin Roche & Pierre Valade, 2020. "Conséquences du changement climatique pour les maladies à transmission vectorielle et impact en assurance de personnes," Working Papers hal-02998538, HAL.
    2. Tobias Brett & Marco Ajelli & Quan-Hui Liu & Mary G Krauland & John J Grefenstette & Willem G van Panhuis & Alessandro Vespignani & John M Drake & Pejman Rohani, 2020. "Detecting critical slowing down in high-dimensional epidemiological systems," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-19, March.
    3. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    4. Tobias S Brett & Pejman Rohani, 2020. "Dynamical footprints enable detection of disease emergence," PLOS Biology, Public Library of Science, vol. 18(5), pages 1-20, May.
    5. Flückiger, Matthias & Ludwig, Markus, 2020. "Malaria suitability, urbanization and subnational development in sub-Saharan Africa," Journal of Urban Economics, Elsevier, vol. 120(C).
    6. Yu-Chieh Cheng & Fang-Jing Lee & Ya-Ting Hsu & Eric V Slud & Chao A Hsiung & Chun-Hong Chen & Ching-Len Liao & Tzai-Hung Wen & Chiu-Wen Chang & Jui-Hun Chang & Hsiao-Yu Wu & Te-Pin Chang & Pei-Sheng L, 2020. "Real-time dengue forecast for outbreak alerts in Southern Taiwan," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(7), pages 1-18, July.
    7. Ana C Piovezan-Borges & Francisco Valente-Neto & Wanderli P Tadei & Neusa Hamada & Fabio O Roque, 2020. "Simulated climate change, but not predation risk, accelerates Aedes aegypti emergence in a microcosm experiment in western Amazonia," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-12, October.
    8. Eunho Suh & Isaac J. Stopard & Ben Lambert & Jessica L. Waite & Nina L. Dennington & Thomas S. Churcher & Matthew B. Thomas, 2024. "Estimating the effects of temperature on transmission of the human malaria parasite, Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew J. Monaghan & K. M. Sampson & D. F. Steinhoff & K. C. Ernst & K. L. Ebi & B. Jones & M. H. Hayden, 2018. "The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti," Climatic Change, Springer, vol. 146(3), pages 487-500, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0005568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.