IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v146y2018i3d10.1007_s10584-016-1679-0.html
   My bibliography  Save this article

The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti

Author

Listed:
  • Andrew J. Monaghan

    (National Center for Atmospheric Research)

  • K. M. Sampson

    (National Center for Atmospheric Research)

  • D. F. Steinhoff

    (National Center for Atmospheric Research)

  • K. C. Ernst

    (University of Arizona)

  • K. L. Ebi

    (University of Washington)

  • B. Jones

    (City University of New York)

  • M. H. Hayden

    (National Center for Atmospheric Research)

Abstract

The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue, chikungunya, Zika and yellow fever. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti. Occurrence patterns for Ae. aegypti for 2061–2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950–2000 reference period. A global land area of 56.9 M km2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8 % (RCP4.5) to 13 % (RCP8.5) by 2061–2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298–460 M (8–12 %) by 2061–2080 if only climate change is considered, and by 4805–5084 M (127–134 %) for SSP3 and 2232–2483 M (59–65 %) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.

Suggested Citation

  • Andrew J. Monaghan & K. M. Sampson & D. F. Steinhoff & K. C. Ernst & K. L. Ebi & B. Jones & M. H. Hayden, 2018. "The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti," Climatic Change, Springer, vol. 146(3), pages 487-500, February.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1679-0
    DOI: 10.1007/s10584-016-1679-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1679-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1679-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cory W Morin & Andrew J Monaghan & Mary H Hayden & Roberto Barrera & Kacey Ernst, 2015. "Meteorologically Driven Simulations of Dengue Epidemics in San Juan, PR," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(8), pages 1-24, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Schindler & Wolfgang Rabitsch & Franz Essl & Peter Wallner & Kathrin Lemmerer & Swen Follak & Hans-Peter Hutter, 2018. "Alien Species and Human Health: Austrian Stakeholder Perspective on Challenges and Solutions," IJERPH, MDPI, vol. 15(11), pages 1-11, November.
    2. Rebeca de Jesús Crespo & Madison Harrison & Rachel Rogers & Randy Vaeth, 2021. "Mosquito Vector Production across Socio-Economic Divides in Baton Rouge, Louisiana," IJERPH, MDPI, vol. 18(4), pages 1-11, February.
    3. Zheng, Bo & Yu, Jianshe & Xi, Zhiyong & Tang, Moxun, 2018. "The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression," Ecological Modelling, Elsevier, vol. 387(C), pages 38-48.
    4. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    5. Rodrigue, Michelle & Romi, Andrea M., 2022. "Environmental escalations to social inequities: Some reflections on the tumultuous state of Gaia," CRITICAL PERSPECTIVES ON ACCOUNTING, Elsevier, vol. 82(C).
    6. Hamidreza Zoraghein & Brian C. O’Neill, 2020. "U.S. State-level Projections of the Spatial Distribution of Population Consistent with Shared Socioeconomic Pathways," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    7. Lena Reimann & Bryan Jones & Nora Bieker & Claudia Wolff & Jeroen C.J.H. Aerts & Athanasios T. Vafeidis, 2023. "Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Guillaume Rohat, 2018. "Projecting Drivers of Human Vulnerability under the Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(3), pages 1-23, March.
    9. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erin A Mordecai & Jeremy M Cohen & Michelle V Evans & Prithvi Gudapati & Leah R Johnson & Catherine A Lippi & Kerri Miazgowicz & Courtney C Murdock & Jason R Rohr & Sadie J Ryan & Van Savage & Marta S, 2017. "Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1679-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.