IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics0304380022000679.html
   My bibliography  Save this article

Selective grazing of zooplankton on phytoplankton defines rapid algal succession and blooms in oceans

Author

Listed:
  • Zheng, Yanlin
  • Gong, Xiang
  • Gao, Huiwang

Abstract

In a model plankton ecosystem containing phytoplankton and zooplankton, the later usually avoids toxic phytoplankton and prefers nontoxic species by modulating its grazing rate. The toxins released by toxic phytoplankton can lead to a decreased grazing rate of zooplankton on both phytoplankton, and the presence of nontoxic phytoplankton in the system also reduces the grazing pressure of zooplankton on the toxic phytoplankton. In this study, a set of functions were given that model the selective grazing of zooplankton on various phytoplankton. Preference coefficient and avoidance coefficient were introduced in the selective grazing functions to measure the level of zooplankton preference of nontoxic phytoplankton and avoidance of toxic phytoplankton, respectively. A dynamics model was established in a nontoxic phytoplankton-toxic phytoplankton-zooplankton system based on the grazing functions of zooplankton to study the existence and stability of an interior equilibrium and Hopf-bifurcation. Our results show that zooplankton selective grazing promotes both zooplankton and toxic phytoplankton biomass, and contributes to maintain the coexistence of all species. Low grazing selectivity, i.e., low values of preference coefficient and avoidance coefficient, decreases the zooplankton population and increases the opportunity for phytoplankton blooms. A moderate level of grazing selectivity helps keep the system in balance. With high grazing selectivity on phytoplankton, toxic phytoplankton becomes the dominant species, resulting in a rapid algal succession and eventual toxic phytoplankton blooms. When the preference coefficient and avoidance coefficient in the dynamics model crossed critical values respectively, the ecosystem enters into a Hopf-bifurcation around the interior equilibrium, inducing oscillations of these populations.

Suggested Citation

  • Zheng, Yanlin & Gong, Xiang & Gao, Huiwang, 2022. "Selective grazing of zooplankton on phytoplankton defines rapid algal succession and blooms in oceans," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000679
    DOI: 10.1016/j.ecolmodel.2022.109947
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agnihotri, Kulbhushan & Kaur, Harpreet, 2021. "Optimal control of harvesting effort in a phytoplankton–zooplankton model with infected zooplankton under the influence of toxicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 946-964.
    2. Pal, S. & Chatterjee, Samrat & Das, Krishna pada & Chattopadhyay, J., 2009. "Role of competition in phytoplankton population for the occurrence and control of plankton bloom in the presence of environmental fluctuations," Ecological Modelling, Elsevier, vol. 220(2), pages 96-110.
    3. Zhao, Qiuyue & Liu, Shutang & Tian, Dadong, 2018. "Dynamic behavior analysis of phytoplankton–zooplankton system with cell size and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 160-168.
    4. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    5. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yafei & Fan, Meng, 2023. "Impact of selective grazing on the dynamics of a diffusive plankton model with component Allee effect and additional food," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Liu, He & Dai, Chuanjun & Yu, Hengguo & Guo, Qing & Li, Jianbing & Hao, Aimin & Kikuchi, Jun & Zhao, Min, 2023. "Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving toxin-producing phytoplankton and impulsive perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 368-386.
    3. Huang, Tousheng & Yu, Chengfeng & Zhang, Kui & Liu, Xingyu & Zhen, Jiulong & Wang, Lan, 2023. "Complex pattern dynamics and synchronization in a coupled spatiotemporal plankton system with zooplankton vertical migration," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Zhao, Qiuyue & Liu, Shutang & Niu, Xinglong, 2019. "Dynamic behavior analysis of a diffusive plankton model with defensive and offensive effects," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 94-102.
    5. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    6. Ghorai, Santu & Bairagi, Nandadulal, 2022. "Instabilities in hyperbolic reaction–diffusion system with cross diffusion and species-dependent inertia," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    7. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    8. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    10. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    11. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    12. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    13. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    14. Rose, Kenneth A. & Sable, Shaye & DeAngelis, Donald L. & Yurek, Simeon & Trexler, Joel C. & Graf, William & Reed, Denise J., 2015. "Proposed best modeling practices for assessing the effects of ecosystem restoration on fish," Ecological Modelling, Elsevier, vol. 300(C), pages 12-29.
    15. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    16. Raw, Sharada Nandan & Sahu, Sevak Ram, 2023. "Strong stability with impact of maturation delay and diffusion on a toxin producing phytoplankton–zooplankton model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 547-570.
    17. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.
    18. Bagchi, Dweepabiswa & Arumugam, Ramesh & Chandrasekar, V.K. & Senthilkumar, D.V., 2022. "Metacommunity stability and persistence for predation turnoff in selective patches," Ecological Modelling, Elsevier, vol. 470(C).
    19. Maar, Marie & Butenschön, Momme & Daewel, Ute & Eggert, Anja & Fan, Wei & Hjøllo, Solfrid S. & Hufnagl, Marc & Huret, Martin & Ji, Rubao & Lacroix, Geneviève & Peck, Myron A. & Radtke, Hagen & Sailley, 2018. "Responses of summer phytoplankton biomass to changes in top-down forcing: Insights from comparative modelling," Ecological Modelling, Elsevier, vol. 376(C), pages 54-67.
    20. Dost, Florian, 2015. "A non-linear causal network of marketing channel system structure," Journal of Retailing and Consumer Services, Elsevier, vol. 23(C), pages 49-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.