IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v190y2021icp946-964.html
   My bibliography  Save this article

Optimal control of harvesting effort in a phytoplankton–zooplankton model with infected zooplankton under the influence of toxicity

Author

Listed:
  • Agnihotri, Kulbhushan
  • Kaur, Harpreet

Abstract

In the present investigation, a prey–predator model consisting of phytoplankton, susceptible zooplankton, and infected zooplankton, incorporating the response function of Holling type II, has been explored. Logistic growth is assumed to be followed by the phytoplankton species. A combined effort (E) is applied to harvest all of the three populations. Environmental toxicity is considered to affect the phytoplankton species directly and the predating zooplankton indirectly. The dynamical behaviour of the model is examined for each of the possible steady states. Hopf-bifurcation analysis has been carried out with the combined harvesting effort E as the bifurcation parameter. The optimal control is characterized by using Pontryagin’s maximum principle. In the end, the analytical discoveries found so far have been established employing numerical simulations.

Suggested Citation

  • Agnihotri, Kulbhushan & Kaur, Harpreet, 2021. "Optimal control of harvesting effort in a phytoplankton–zooplankton model with infected zooplankton under the influence of toxicity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 946-964.
  • Handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:946-964
    DOI: 10.1016/j.matcom.2021.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421002457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juneja, Nishant & Agnihotri, Kulbhushan & Kaur, Harpreet, 2018. "Effect of delay on globally stable prey–predator system," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 146-156.
    2. Juneja, Nishant & Agnihotri, Kulbhushan, 2018. "Conservation of a predator species in SIS prey-predator system using optimal taxation policy," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 86-94.
    3. Agnihotri, Kulbhushan & Kaur, Harpreet, 2019. "The dynamics of viral infection in toxin producing phytoplankton and zooplankton system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 122-133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, He & Dai, Chuanjun & Yu, Hengguo & Guo, Qing & Li, Jianbing & Hao, Aimin & Kikuchi, Jun & Zhao, Min, 2023. "Dynamics of a stochastic non-autonomous phytoplankton–zooplankton system involving toxin-producing phytoplankton and impulsive perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 368-386.
    2. Zheng, Yanlin & Gong, Xiang & Gao, Huiwang, 2022. "Selective grazing of zooplankton on phytoplankton defines rapid algal succession and blooms in oceans," Ecological Modelling, Elsevier, vol. 468(C).
    3. Li, Peiluan & Gao, Rong & Xu, Changjin & Li, Ying & Akgül, Ali & Baleanu, Dumitru, 2023. "Dynamics exploration for a fractional-order delayed zooplankton–phytoplankton system," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juneja, Nishant & Agnihotri, Kulbhushan, 2018. "Conservation of a predator species in SIS prey-predator system using optimal taxation policy," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 86-94.
    2. Thakur, Nilesh Kumar & Ojha, Archana & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2021. "An investigation of delay induced stability transition in nutrient-plankton systems," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Yuanlin Ma & Xingwang Yu, 2022. "Stationary Probability Density Analysis for the Randomly Forced Phytoplankton–Zooplankton Model with Correlated Colored Noises," Mathematics, MDPI, vol. 10(14), pages 1-11, July.
    4. Barman, Binandita & Ghosh, Bapan, 2019. "Explicit impacts of harvesting in delayed predator-prey models," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 213-228.
    5. Agnihotri, Kulbhushan & Kaur, Harpreet, 2019. "The dynamics of viral infection in toxin producing phytoplankton and zooplankton system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 122-133.
    6. Mingjing Du & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Three-Dimensional Kolmogorov Model with Chaotic Dynamic Behavior by Using Barycentric Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:190:y:2021:i:c:p:946-964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.