IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53001-1.html
   My bibliography  Save this article

On the structure of species-function participation in multilayer ecological networks

Author

Listed:
  • Sandra Hervías-Parejo

    (CSIC-UIB)
    University of Coimbra)

  • Mar Cuevas-Blanco

    ((IFISC, CSIC-UIB))

  • Lucas Lacasa

    ((IFISC, CSIC-UIB))

  • Anna Traveset

    (CSIC-UIB))

  • Isabel Donoso

    (CSIC-UIB)
    Scientific Campus of the University of the Basque Country
    Basque Foundation for Science)

  • Ruben Heleno

    (University of Coimbra)

  • Manuel Nogales

    (Institute of Natural Products and Agrobiology (IPNA-CSIC))

  • Susana Rodríguez-Echeverría

    (University of Coimbra)

  • Carlos J. Melián

    ((IFISC, CSIC-UIB)
    Eawag Centre of Ecology, Evolution and Biogeochemistry
    University of Bern)

  • Victor M. Eguíluz

    (Scientific Campus of the University of the Basque Country
    Basque Foundation for Science)

Abstract

Understanding how biotic interactions shape ecosystems and impact their functioning, resilience and biodiversity has been a sustained research priority in ecology. Yet, traditional assessments of ecological complexity typically focus on species-species interactions that mediate a particular function (e.g., pollination), overlooking both the synergistic effect that multiple functions might develop as well as the resulting species-function participation patterns that emerge in ecosystems that harbor multiple ecological functions. Here we propose a mathematical framework that integrates various types of biotic interactions observed between different species. Its application to recently collected data of an islet ecosystem—reporting 1537 interactions between 691 plants, animals and fungi across six different functions (pollination, herbivory, seed dispersal, decomposition, nutrient uptake, and fungal pathogenicity)—unveils a non-random, nested structure in the way plant species participate across different functions. The framework further allows us to identify a ranking of species and functions, where woody shrubs and fungal decomposition emerge as keystone actors whose removal have a larger-than-random effect on secondary extinctions. The dual insight—from species and functional perspectives—offered by the framework opens the door to a richer quantification of ecosystem complexity and to better calibrate the influence of multifunctionality on ecosystem functioning and biodiversity.

Suggested Citation

  • Sandra Hervías-Parejo & Mar Cuevas-Blanco & Lucas Lacasa & Anna Traveset & Isabel Donoso & Ruben Heleno & Manuel Nogales & Susana Rodríguez-Echeverría & Carlos J. Melián & Victor M. Eguíluz, 2024. "On the structure of species-function participation in multilayer ecological networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53001-1
    DOI: 10.1038/s41467-024-53001-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53001-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53001-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kayla R. S. Hale & Fernanda S. Valdovinos & Neo D. Martinez, 2020. "Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    2. Leandro G. Cosmo & Ana Paula A. Assis & Marcus A. M. de Aguiar & Mathias M. Pires & Alfredo Valido & Pedro Jordano & John N. Thompson & Jordi Bascompte & Paulo R. Guimarães, 2023. "Indirect effects shape species fitness in coevolved mutualistic networks," Nature, Nature, vol. 619(7971), pages 788-792, July.
    3. Samir Suweis & Filippo Simini & Jayanth R. Banavar & Amos Maritan, 2013. "Emergence of structural and dynamical properties of ecological mutualistic networks," Nature, Nature, vol. 500(7463), pages 449-452, August.
    4. Andy Hector & Robert Bagchi, 2007. "Biodiversity and ecosystem multifunctionality," Nature, Nature, vol. 448(7150), pages 188-190, July.
    5. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    6. Tiffany M. Knight & Michael W. McCoy & Jonathan M. Chase & Krista A. McCoy & Robert D. Holt, 2005. "Trophic cascades across ecosystems," Nature, Nature, vol. 437(7060), pages 880-883, October.
    7. Manuel Sebastian Mariani & Zhuo-Ming Ren & Jordi Bascompte & Claudio Juan Tessone, 2019. "Nestedness in complex networks: Observation, emergence, and implications," Papers 1905.07593, arXiv.org.
    8. Santiago Soliveres & Fons van der Plas & Peter Manning & Daniel Prati & Martin M. Gossner & Swen C. Renner & Fabian Alt & Hartmut Arndt & Vanessa Baumgartner & Julia Binkenstein & Klaus Birkhofer & St, 2016. "Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality," Nature, Nature, vol. 536(7617), pages 456-459, August.
    9. Paulo R. Guimarães & Mathias M. Pires & Pedro Jordano & Jordi Bascompte & John N. Thompson, 2017. "Indirect effects drive coevolution in mutualistic networks," Nature, Nature, vol. 550(7677), pages 511-514, October.
    10. Evan C. Fricke & Jens-Christian Svenning, 2020. "Accelerating homogenization of the global plant–frugivore meta-network," Nature, Nature, vol. 585(7823), pages 74-78, September.
    11. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    12. Christopher N. Kaiser-Bunbury & James Mougal & Andrew E. Whittington & Terence Valentin & Ronny Gabriel & Jens M. Olesen & Nico Blüthgen, 2017. "Ecosystem restoration strengthens pollination network resilience and function," Nature, Nature, vol. 542(7640), pages 223-227, February.
    13. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    14. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.
    4. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A Data Driven Network Approach to Rank Countries Production Diversity and Food Specialization," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    5. Zhuo-Ming Ren & An Zeng & Yi-Cheng Zhang, 2020. "Bridging nestedness and economic complexity in multilayer world trade networks," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-8, December.
    6. Mika J. Straka & Guido Caldarelli & Tiziano Squartini & Fabio Saracco, 2017. "From Ecology to Finance (and Back?): Recent Advancements in the Analysis of Bipartite Networks," Papers 1710.10143, arXiv.org.
    7. González, Cecilia, 2023. "Evolution of the concept of ecological integrity and its study through networks," Ecological Modelling, Elsevier, vol. 476(C).
    8. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    9. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    10. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    11. Roberto Cazzolla Gatti & Roger Koppl & Brian D. Fath & Stuart Kauffman & Wim Hordijk & Robert E. Ulanowicz, 2020. "On the emergence of ecological and economic niches," Journal of Bioeconomics, Springer, vol. 22(2), pages 99-127, July.
    12. Tacchella, Andrea & Zaccaria, Andrea & Miccheli, Marco & Pietronero, Luciano, 2023. "Relatedness in the era of machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Frank Neffke & Angelica Sbardella & Ulrich Schetter & Andrea Tacchella, 2024. "Economic Complexity Analysis," Papers in Evolutionary Economic Geography (PEEG) 2430, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2024.
    14. Rodríguez, Ricardo A. & Delgado, Juan D. & Herrera, Ada Ma. & Riera, Rodrigo & Navarro, Rafael Ma. & Melián, Carlos & Dieguez, Lorenzo & Quirós, Ángel, 2013. "Effects of two traits of the ecological state equation on our understanding of species coexistence and ecosystem services," Ecological Modelling, Elsevier, vol. 265(C), pages 1-13.
    15. Richard J. Williams & Neo D. Martinez, 2001. "Stabilization of Chaotic and Non-Permanent Food Web Dynamics," Working Papers 01-07-037, Santa Fe Institute.
    16. Revilla, Tomás A. & Marcou, Thomas & Křivan, Vlastimil, 2021. "Plant competition under simultaneous adaptation by herbivores and pollinators," Ecological Modelling, Elsevier, vol. 455(C).
    17. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    18. Zhuoming Ren & Wenli Du & Ziyi Zhao & Li Zhao & Tongfeng Weng, 2024. "Strategies for selecting trading partners based on economic complexity of international trade networks: A comparison between Chinese and the US markets," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-12, December.
    19. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    20. Yang, Shuhui & Li, Zhongkai & Zhou, Jianlin & Gao, Yancheng & Cui, Xuefeng, 2024. "Evolving patterns of agricultural production space in China: A network-based approach," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 5(1), pages 121-134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53001-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.