IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v405y2019icp1-14.html
   My bibliography  Save this article

Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach

Author

Listed:
  • Schmolke, Amelie
  • Bartell, Steven M.
  • Roy, Colleen
  • Green, Nicholas
  • Galic, Nika
  • Brain, Richard

Abstract

The Topeka shiner, a small cyprinid fish, is a seminal example of an endangered aquatic species in the Midwestern USA. Populations and their associated critical habitats may experience potential direct and/or indirect effects from anthropogenic activity. However, potential impacts on fish populations from alterations in the food web are difficult to predict because they are based on complex dynamics of food web interactions. In order to simulate Topeka shiner population dynamics under different food-web scenarios, a hybrid modeling approach was developed by linking an aquatic food web model (comprehensive aquatic systems model, CASMTS) with a species-specific, individual-based population model (TS-IBM). The CASMTS was parameterized and calibrated to represent the waterbody conditions and aquatic species community in a small headwater pool in Iowa, representative of key habitat for the Topeka shiner within its geographical range. In the TS-IBM, life history, growth, and diet are represented and based on data available from the literature for the Topeka shiner and/or surrogate species. The two models are linked by the transfer of daily biomasses of Topeka shiner diet items. We simulated the effects of alterations of the food web on the Topeka shiner populations by systematically reducing the available prey base biomass. Reductions in different food groups had varying impacts on the simulated Topeka shiner populations and were dependent on the species’ preference for detritus consumption. Simulations also included predation and identified predator densities to which Topeka shiner populations were vulnerable. The hybrid model provides a platform for the assessment of potential direct and food-web mediated indirect effects of stressors for the purposes of risk assessment, habitat management, and species recovery plans.

Suggested Citation

  • Schmolke, Amelie & Bartell, Steven M. & Roy, Colleen & Green, Nicholas & Galic, Nika & Brain, Richard, 2019. "Species-specific population dynamics and their link to an aquatic food web: A hybrid modeling approach," Ecological Modelling, Elsevier, vol. 405(C), pages 1-14.
  • Handle: RePEc:eee:ecomod:v:405:y:2019:i:c:p:1-14
    DOI: 10.1016/j.ecolmodel.2019.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019301292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kate H Macneale & Julann A Spromberg & David H Baldwin & Nathaniel L Scholz, 2014. "A Modeled Comparison of Direct and Food Web-Mediated Impacts of Common Pesticides on Pacific Salmon," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    2. Grimm, Volker & Augusiak, Jacqueline & Focks, Andreas & Frank, Béatrice M. & Gabsi, Faten & Johnston, Alice S.A. & Liu, Chun & Martin, Benjamin T. & Meli, Mattia & Radchuk, Viktoriia & Thorbek, Pernil, 2014. "Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE," Ecological Modelling, Elsevier, vol. 280(C), pages 129-139.
    3. Jager, Henriette I. & DeAngelis, Donald L., 2018. "The confluences of ideas leading to, and the flow of ideas emerging from, individual-based modeling of riverine fishes," Ecological Modelling, Elsevier, vol. 384(C), pages 341-352.
    4. Augusiak, Jacqueline & Van den Brink, Paul J. & Grimm, Volker, 2014. "Merging validation and evaluation of ecological models to ‘evaludation’: A review of terminology and a practical approach," Ecological Modelling, Elsevier, vol. 280(C), pages 117-128.
    5. Strauss, Tido & Gabsi, Faten & Hammers-Wirtz, Monika & Thorbek, Pernille & Preuss, Thomas G., 2017. "The power of hybrid modelling: An example from aquatic ecosystems," Ecological Modelling, Elsevier, vol. 364(C), pages 77-88.
    6. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    2. Watson, Joseph W & Boyd, Robin & Dutta, Ritabrata & Vasdekis, Georgios & Walker, Nicola D. & Roy, Shovonlal & Everitt, Richard & Hyder, Kieran & Sibly, Richard M, 2022. "Incorporating environmental variability in a spatially-explicit individual-based model of European sea bass✰," Ecological Modelling, Elsevier, vol. 466(C).
    3. Boult, Victoria L. & Quaife, Tristan & Fishlock, Vicki & Moss, Cynthia J. & Lee, Phyllis C. & Sibly, Richard M., 2018. "Individual-based modelling of elephant population dynamics using remote sensing to estimate food availability," Ecological Modelling, Elsevier, vol. 387(C), pages 187-195.
    4. Ayllón, Daniel & Railsback, Steven F. & Vincenzi, Simone & Groeneveld, Jürgen & Almodóvar, Ana & Grimm, Volker, 2016. "InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change," Ecological Modelling, Elsevier, vol. 326(C), pages 36-53.
    5. Fitts, Lucia A. & Fraser, Jacob S. & Miranda, Brian R. & Domke, Grant M. & Russell, Matthew B. & Sturtevant, Brian R., 2023. "An iterative site-scale approach to calibrate and corroborate successional processes within a forest landscape model," Ecological Modelling, Elsevier, vol. 477(C).
    6. Boyd, Robin & Roy, Shovonlal & Sibly, Richard & Thorpe, Robert & Hyder, Kieran, 2018. "A general approach to incorporating spatial and temporal variation in individual-based models of fish populations with application to Atlantic mackerel," Ecological Modelling, Elsevier, vol. 382(C), pages 9-17.
    7. Crouse, Kristin N. & Desai, Nisarg P. & Cassidy, Kira A. & Stahler, Erin E. & Lehman, Clarence L. & Wilson, Michael L., 2022. "Larger territories reduce mortality risk for chimpanzees, wolves, and agents: Multiple lines of evidence in a model validation framework," Ecological Modelling, Elsevier, vol. 471(C).
    8. Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
    9. An, Li & Grimm, Volker & Sullivan, Abigail & Turner II, B.L. & Malleson, Nicolas & Heppenstall, Alison & Vincenot, Christian & Robinson, Derek & Ye, Xinyue & Liu, Jianguo & Lindkvist, Emilie & Tang, W, 2021. "Challenges, tasks, and opportunities in modeling agent-based complex systems," Ecological Modelling, Elsevier, vol. 457(C).
    10. King, Elizabeth G. & Franz, Trenton E., 2016. "Combining ecohydrologic and transition probability-based modeling to simulate vegetation dynamics in a semi-arid rangeland," Ecological Modelling, Elsevier, vol. 329(C), pages 41-63.
    11. Courbaud, B. & Lafond, V. & Lagarrigues, G. & Vieilledent, G. & Cordonnier, T. & Jabot, F. & de Coligny, F., 2015. "Applying ecological model evaludation: Lessons learned with the forest dynamics model Samsara2," Ecological Modelling, Elsevier, vol. 314(C), pages 1-14.
    12. Lapp, Maya & Long, Colby, 2022. "A new approach to agent-based models of Community Resource Management based on the analysis of cheating, monitoring, and sanctioning," Ecological Modelling, Elsevier, vol. 468(C).
    13. Planque, Benjamin & Aarflot, Johanna M. & Buttay, Lucie & Carroll, JoLynn & Fransner, Filippa & Hansen, Cecilie & Husson, Bérengère & Langangen, Øystein & Lindstrøm, Ulf & Pedersen, Torstein & Primice, 2022. "A standard protocol for describing the evaluation of ecological models," Ecological Modelling, Elsevier, vol. 471(C).
    14. Cartwright, Samantha J. & Bowgen, Katharine M. & Collop, Catherine & Hyder, Kieran & Nabe-Nielsen, Jacob & Stafford, Richard & Stillman, Richard A. & Thorpe, Robert B. & Sibly, Richard M., 2016. "Communicating complex ecological models to non-scientist end users," Ecological Modelling, Elsevier, vol. 338(C), pages 51-59.
    15. Liukkonen, Lauri & Ayllón, Daniel & Kunnasranta, Mervi & Niemi, Marja & Nabe-Nielsen, Jacob & Grimm, Volker & Nyman, Anna-Maija, 2018. "Modelling movements of Saimaa ringed seals using an individual-based approach," Ecological Modelling, Elsevier, vol. 368(C), pages 321-335.
    16. Dick, D.D.C. & Ayllón, D., 2017. "FloMan-MF: Floodplain Management for the Moor Frog − a simulation model for amphibian conservation in dynamic wetlands," Ecological Modelling, Elsevier, vol. 348(C), pages 110-124.
    17. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    18. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    19. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    20. Walker, Nicola D. & Boyd, Robin & Watson, Joseph & Kotz, Max & Radford, Zachary & Readdy, Lisa & Sibly, Richard & Roy, Shovonlal & Hyder, Kieran, 2020. "A spatially explicit individual-based model to support management of commercial and recreational fisheries for European sea bass Dicentrarchus labrax," Ecological Modelling, Elsevier, vol. 431(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:405:y:2019:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.