IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i15p1757-1769.html
   My bibliography  Save this article

Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models

Author

Listed:
  • Vermard, Youen
  • Rivot, Etienne
  • Mahévas, Stéphanie
  • Marchal, Paul
  • Gascuel, Didier

Abstract

Recent advances in technologies have lead to a vast influx of data on movements, based on discrete recorded position of animals or fishing boats, opening new horizons for future analyses. However, most of the potential interest of tracking data depends on the ability to develop suitable modelling strategies to analyze trajectories from discrete recorded positions. A serious modelling challenge is to infer the evolution of the true position and the associated spatio-temporal distribution of behavioural states using discrete, error-prone and incomplete observations. In this paper, a Bayesian Hierarchical Model (HBM) using Hidden Markov Process (HMP) is proposed as a template for analyzing fishing boats trajectories based on data available from satellite-based vessel monitoring systems (VMS). The analysis seeks to enhance the definition of the fishing pressure exerted on fish stocks, by discriminating between the different behavioural states of a fishing trip, and also by quantifying the relative importance of each of these states during a fishing trip. The HBM approach is tested to analyse the behaviour of pelagic trawlers in the Bay of Biscay. A hidden Markov chain with a regular discrete time step is used to model transitions between successive behavioural states (e.g., fishing, steaming, stopping (at Port or at sea)) of each vessel. The parameters of the movement process (speed and turning angles) are defined conditionally upon the behavioural states. Bayesian methods are used to integrate the available data (typically VMS position recorded at discrete time) and to draw inferences on any unknown parameters of the model. The model is first tested on simulated data with different parameters structures. Results provide insights on the potential of HBM with HMP to analyze VMS data. They show that if VMS positions are recorded synchronously with the instants at which the process switch from one behavioural state to another, the estimation method provides unbiased and precise inferences on behavioural states and on associated movement parameters. However, if the observations are not gathered with a sufficiently high frequency, the performance of the estimation method could be drastically impacted when the discrete observations are not synchronous with the switching instants. The model is then applied to real pathways to estimate variables of interest such as the number of operations per trip, time and distance spent fishing or travelling.

Suggested Citation

  • Vermard, Youen & Rivot, Etienne & Mahévas, Stéphanie & Marchal, Paul & Gascuel, Didier, 2010. "Identifying fishing trip behaviour and estimating fishing effort from VMS data using Bayesian Hidden Markov Models," Ecological Modelling, Elsevier, vol. 221(15), pages 1757-1769.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:15:p:1757-1769
    DOI: 10.1016/j.ecolmodel.2010.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010001912
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pelletier, Dominique & Mahevas, Stéphanie & Drouineau, Hilaire & Vermard, Youen & Thebaud, Olivier & Guyader, Olivier & Poussin, Benjamin, 2009. "Evaluation of the bioeconomic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using ISIS-Fish," Ecological Modelling, Elsevier, vol. 220(7), pages 1013-1033.
    2. Dominique Pelletier & Stéphanie Mahévas & Hilaire Drouineau & Youen Vermard & Olivier Thébaud & Olivier Guyader, 2009. "Evaluation of the bio-economic sustainability of multi-species multi-fleet fisheries under a wide range of policy options using ISIS-Fish," Post-Print hal-00511774, HAL.
    3. Youen Vermard & Paul Marchal & Stéphanie Mahévas & Olivier Thébaud, 2008. "A dynamic model of the Bay of Biscay pelagic fleet simulating fishing trip choice: the response to the closure of the European anchovy (Engraulis encrasicolus) fishery in 2005," Post-Print hal-00368317, HAL.
    4. Smith, Martin D. & Wilen, James E., 2003. "Economic impacts of marine reserves: the importance of spatial behavior," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 183-206, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erico N de Souza & Kristina Boerder & Stan Matwin & Boris Worm, 2016. "Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-20, July.
    2. Lamonica, Dominique & Drouineau, Hilaire & Capra, Hervé & Pella, Hervé & Maire, Anthony, 2020. "A framework for pre-processing individual location telemetry data for freshwater fish in a river section," Ecological Modelling, Elsevier, vol. 431(C).
    3. Floriane Cardiec & Sophie Bertrand & Matthew J Witt & Kristian Metcalfe & Brendan J Godley & Catherine McClellan & Raul Vilela & Richard J Parnell & François le Loc’h, 2020. "“Too Big To Ignore”: A feasibility analysis of detecting fishing events in Gabonese small-scale fisheries," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    4. Walker, E. & Bez, N., 2010. "A pioneer validation of a state-space model of vessel trajectories (VMS) with observers’ data," Ecological Modelling, Elsevier, vol. 221(17), pages 2008-2017.
    5. Woillez, Mathieu & Fablet, Ronan & Ngo, Tran-Thanh & Lalire, Maxime & Lazure, Pascal & de Pontual, Hélène, 2016. "A HMM-based model to geolocate pelagic fish from high-resolution individual temperature and depth histories: European sea bass as a case study," Ecological Modelling, Elsevier, vol. 321(C), pages 10-22.
    6. Aurélie Foveau & Sandrine Vaz & Nicolas Desroy & Vladimir E Kostylev, 2017. "Process-driven and biological characterisation and mapping of seabed habitats sensitive to trawling," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-30, October.
    7. Boyd, Charlotte & Punt, André E. & Weimerskirch, Henri & Bertrand, Sophie, 2014. "Movement models provide insights into variation in the foraging effort of central place foragers," Ecological Modelling, Elsevier, vol. 286(C), pages 13-25.
    8. Paterson, Barbara, 2015. "Tracks, trawls and lines—Knowledge practices of skippers in the Namibian hake fisheries," Marine Policy, Elsevier, vol. 60(C), pages 309-317.
    9. Russo, Tommaso & Pulcinella, Jacopo & Parisi, Antonio & Martinelli, Michela & Belardinelli, Andrea & Santojanni, Alberto & Cataudella, Stefano & Colella, Sabrina & Anderlini, Luca, 2015. "Modelling the strategy of mid-water trawlers targeting small pelagic fish in the Adriatic Sea and its drivers," Ecological Modelling, Elsevier, vol. 300(C), pages 102-113.
    10. Demestre, Montserrat & Muntadas, Alba & de Juan, Silvia & Mitilineou, Chryssi & Sartor, Paolo & Mas, Julio & Kavadas, Stefanos & Martín, Javier, 2015. "The need for fine-scale assessment of trawl fishing effort to inform on an ecosystem approach to fisheries: Exploring three data sources in Mediterranean trawling grounds," Marine Policy, Elsevier, vol. 62(C), pages 134-143.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inês Pereira & Ualerson Iran Peixoto & Wendell Medeiros-Leal & Morgan Casal-Ribeiro & Régis Santos, 2022. "Multidimensional Indicators to Assess the Sustainability of Demersal Small-Scale Fishery in the Azores," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
    2. Kvamsdal, Sturla & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2017. "A bridge between continuous and discrete-time bioeconomic models: Seasonality in fisheries," Ecological Modelling, Elsevier, vol. 364(C), pages 124-131.
    3. Russo, Tommaso & Pulcinella, Jacopo & Parisi, Antonio & Martinelli, Michela & Belardinelli, Andrea & Santojanni, Alberto & Cataudella, Stefano & Colella, Sabrina & Anderlini, Luca, 2015. "Modelling the strategy of mid-water trawlers targeting small pelagic fish in the Adriatic Sea and its drivers," Ecological Modelling, Elsevier, vol. 300(C), pages 102-113.
    4. Grafton, R. Quentin & Akter, Sonia & Kompas, Tom, 2009. "Guide to the Ex-Ante Socio-Economic Evaluation of Marine Protected Areas," Research Reports 94827, Australian National University, Environmental Economics Research Hub.
    5. Börger, Tobias & Beaumont, Nicola J. & Pendleton, Linwood & Boyle, Kevin J. & Cooper, Philip & Fletcher, Stephen & Haab, Tim & Hanemann, Michael & Hooper, Tara L. & Hussain, S. Salman & Portela, Rosim, 2014. "Incorporating ecosystem services in marine planning: The role of valuation," Marine Policy, Elsevier, vol. 46(C), pages 161-170.
    6. Tabeta, Shigeru & Suzuki, Shota & Nakamura, Kenta, 2017. "Assessment of fishery management by using a fishery simulator for bottom otter trawling in Ise Bay," Ecological Modelling, Elsevier, vol. 358(C), pages 40-49.
    7. Ni, Yuanming & Sandal, Leif Kristoffer, 2019. "Seasonality matters: A multi-season, multi-state dynamic optimization in fisheries," European Journal of Operational Research, Elsevier, vol. 275(2), pages 648-658.
    8. Christopher Costello & Daniel T. Kaffine, 2010. "Marine protected areas in spatial property-rights fisheries ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 321-341, July.
    9. Costello, Christopher & Molina, Renato, 2021. "Transboundary marine protected areas," Resource and Energy Economics, Elsevier, vol. 65(C).
    10. Catherine J. Morrison Paul & Ronald G. Felthoven & Marcelo de O. Torres, 2010. "Productive performance in fisheries: modeling, measurement, and management," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 343-360, July.
    11. Davis, Katrina & Pannell, David J. & Kragt, Marit & Gelcich, Stefan & Schilizzi, Steven, 2014. "Accounting for enforcement is essential to improve the spatial allocation of marine restricted-use zoning systems," Working Papers 195718, University of Western Australia, School of Agricultural and Resource Economics.
    12. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    13. A. Hoff & J. Andersen & A. Christensen & H. Mosegaard, 2013. "Modelling the economic consequences of Marine Protected Areas using the BEMCOM model," Journal of Bioeconomics, Springer, vol. 15(3), pages 305-323, October.
    14. Gobillon, Laurent & Wolff, François-Charles, 2020. "The local effects of an innovation: Evidence from the French fish market," Ecological Economics, Elsevier, vol. 171(C).
    15. Campbell, Maria S. & Stehfest, Kilian M. & Votier, Stephen C. & Hall-Spencer, Jason M., 2014. "Mapping fisheries for marine spatial planning: Gear-specific vessel monitoring system (VMS), marine conservation and offshore renewable energy," Marine Policy, Elsevier, vol. 45(C), pages 293-300.
    16. Robert N. Stavins, 2011. "The Problem of the Commons: Still Unsettled after 100 Years," American Economic Review, American Economic Association, vol. 101(1), pages 81-108, February.
    17. Martin D. Smith & Larry B. Crowder, 2011. "Valuing Ecosystem Services with Fishery Rents: A Lumped-Parameter Approach to Hypoxia in the Neuse River Estuary," Sustainability, MDPI, vol. 3(11), pages 1-39, November.
    18. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    19. Brock, W. A. & Xepapadeas, A., 2015. "Modeling Coupled Climate, Ecosystems, and Economic Systems," Climate Change and Sustainable Development 206837, Fondazione Eni Enrico Mattei (FEEM).
    20. Cabral, Reniel B. & Geronimo, Rollan C. & Lim, May T. & Aliño, Porfirio M., 2010. "Effect of variable fishing strategy on fisheries under changing effort and pressure: An agent-based model application," Ecological Modelling, Elsevier, vol. 221(2), pages 362-369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:15:p:1757-1769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.